Transmissible spongiform encephalopathies(TSEs)are a group of progressive and ultimately fatal neurologic diseases of man and animals,all resulting from the propagated misfolding of the host's normal cellular prio...Transmissible spongiform encephalopathies(TSEs)are a group of progressive and ultimately fatal neurologic diseases of man and animals,all resulting from the propagated misfolding of the host's normal cellular prion protein.These diseases can be spontaneous,heritable,anthropogenic/iatrogenic,or in some cases horizontally transmissible,and include such notable TSEs as bovine spongiform encephalopathy(BSE)of cattle and chronic wasting disease(CWD)of cervids.Although they are both unequivocally protein misfolding disorders,they differ markedly in their pathogenesis,transmissibility,and zoonotic potential.While the BSE epidemic has largely abated over the past three decades following global feed bans on ruminant meat and bone meal,CWD,which is readily transmitted through various forms of excreta,has rapidly expanded from its original endemic zone to encompass much of North America,along with recently identified foci in Scandinavia.Most importantly,although the classical form of BSE has proven transmissible to humans consuming contaminated beef or beef products,so far there have been no conclusive reports on the zoonotic transmission of cWD to humans.The underlying basis for these differences-whether host or agent directed-are not well understood,though may be due to inherent differences in the three-dimensional structure of the misfolded BSE or CWD prion proteins or the expression levels and tissue distribution of respective cellular prion proteins.With the uncontrolled geographic spread of CWD,it is imperative that we improve our understanding of the factors governing prion disease pathogenesis,transmission,and zoonotic potential.展开更多
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE s...Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrPc) into the disease-associated isoform (prpSc). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties.展开更多
Owing to the high oxygen-respiration in the brain of mammals, oxidative damage to prion protein hasbeen suggested to be an additional factor. A large body of intriguing features of scrapie and prion diseases haveprovi...Owing to the high oxygen-respiration in the brain of mammals, oxidative damage to prion protein hasbeen suggested to be an additional factor. A large body of intriguing features of scrapie and prion diseases haveprovided multiple lines of indirect chemistry evidence, suggesting that the infectious agents may be putative forms ofsequence-specific prion radicals (SSPR) and/or their immediate precursors in the transmissible spongiform encepha-lopathies (TSE). Here a molecular mechanism corresponding to the self-replication of scrapie protein mediated byprion free-radical processes, consonant with "protein-only" hypotheses is proposed. This new theory may not onlyaid our understanding of the occurrence of prions, but also provides new insight into the possible chemistry principlesunderlying the neurodegenerative disorders. It is anticipated that future studies based on this suggestion and chem-istry principles of genetic diseases may allow us to determine an effective approach to stop mad cow disease and itshuman version, new variant of Creutzfeldt-Jakob disease (v CJD).展开更多
In the last decades,the role of the prion protein(PrP) in neurodegenerative diseases has been intensively investigated,initially in prion diseases of humans(e.g., Creutzfeldt-J akob disease) and animals(e.g.,scrapie i...In the last decades,the role of the prion protein(PrP) in neurodegenerative diseases has been intensively investigated,initially in prion diseases of humans(e.g., Creutzfeldt-J akob disease) and animals(e.g.,scrapie in sheep,chronic wasting disease in deer and elk,or "mad cow disease" in cattle).Templated misfolding of physiological cellular prion protein(PrPC) into an aggregation-prone isoform(termed PrP "Scrapie"(PrPSc)),self-re plication and spreading of the latter inside the brain and to peripheral tissues,and the associated formation of infectious proteopathic seeds(termed "prions")are among the essential pathogenic mechanisms underlying this group of fatal and transmissible spongiform encephalopathies.Late r,key roles of the correctly folded PrPCwere identified in more common human brain diseases(such as Alzheimer s disease or Parkinson’s disease) associated with the misfolding and/or accumulation of other proteins(such as amyloid-β,tau or α-synuclein,respectively).PrPChas also been linked with n euro protective and regenerative functions,for instance in hypoxic/ischemic conditions such as stroke.However,despite a mixed "bouquet" of suggested functions,our understanding of pathological and,especially,physiological roles played by PrPCin the brain and beyond is ce rtainly incomplete.Interactions with various other proteins at the cell surfa ce or within intracellular compartments may account for the functional diversity linked with PrPC.Moreover,conserved endogenous proteolytic processing of PrPCgenerates seve ral defined PrPCfragments,possibly holding intrinsic functions in physiological and pathological conditions,thus making the "true and complete biology" of this protein more complicated to be elucidated.Here,we focus on one of those released PrPCfragments,namely shed PrP(sPrP),generated by a membrane-proximate ADAM10-mediated cleavage event at the cell surfa ce.Similar to other soluble PrP fragments(such as the N1 fragment representing PrP’s released N-terminal tail upon the major α-cleavage event)or expe rimentally employed recombinant PrP,sPrP is being suggested to act n euro protective in Alzheimer’s disease and other protein misfolding diseases.Seve ral lines of evidence on extracellular PrPC(fragments) suggest that induction of PrPCrelease co uld be a future therapeutic option in various brain disorders.Our recent identification of a substrate-specific approach to stimulate the shedding by ADAM 10,based on ligands binding to cell surface PrPC,may further set the stage for research into this direction.展开更多
基金funded in part by the Center on Emerging and Zoonotic Infectious Diseases(CEZID)of the National Institutes of General Medical Sciences underaward number P20GM130448.
文摘Transmissible spongiform encephalopathies(TSEs)are a group of progressive and ultimately fatal neurologic diseases of man and animals,all resulting from the propagated misfolding of the host's normal cellular prion protein.These diseases can be spontaneous,heritable,anthropogenic/iatrogenic,or in some cases horizontally transmissible,and include such notable TSEs as bovine spongiform encephalopathy(BSE)of cattle and chronic wasting disease(CWD)of cervids.Although they are both unequivocally protein misfolding disorders,they differ markedly in their pathogenesis,transmissibility,and zoonotic potential.While the BSE epidemic has largely abated over the past three decades following global feed bans on ruminant meat and bone meal,CWD,which is readily transmitted through various forms of excreta,has rapidly expanded from its original endemic zone to encompass much of North America,along with recently identified foci in Scandinavia.Most importantly,although the classical form of BSE has proven transmissible to humans consuming contaminated beef or beef products,so far there have been no conclusive reports on the zoonotic transmission of cWD to humans.The underlying basis for these differences-whether host or agent directed-are not well understood,though may be due to inherent differences in the three-dimensional structure of the misfolded BSE or CWD prion proteins or the expression levels and tissue distribution of respective cellular prion proteins.With the uncontrolled geographic spread of CWD,it is imperative that we improve our understanding of the factors governing prion disease pathogenesis,transmission,and zoonotic potential.
基金supported by the National Natural Science Foundation of China(31060302 and 31260032)the Transgene Special Project of the Ministry of Agriculture of China(2011ZX08009-003-006)the Natural Science Foundation of Yunnan Province(2010CD010)
文摘Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrPc) into the disease-associated isoform (prpSc). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties.
基金Supported partly by the National Natural Science Foundation of China(No.20042002)and the Ministry of Science and Technology of China
文摘Owing to the high oxygen-respiration in the brain of mammals, oxidative damage to prion protein hasbeen suggested to be an additional factor. A large body of intriguing features of scrapie and prion diseases haveprovided multiple lines of indirect chemistry evidence, suggesting that the infectious agents may be putative forms ofsequence-specific prion radicals (SSPR) and/or their immediate precursors in the transmissible spongiform encepha-lopathies (TSE). Here a molecular mechanism corresponding to the self-replication of scrapie protein mediated byprion free-radical processes, consonant with "protein-only" hypotheses is proposed. This new theory may not onlyaid our understanding of the occurrence of prions, but also provides new insight into the possible chemistry principlesunderlying the neurodegenerative disorders. It is anticipated that future studies based on this suggestion and chem-istry principles of genetic diseases may allow us to determine an effective approach to stop mad cow disease and itshuman version, new variant of Creutzfeldt-Jakob disease (v CJD).
基金supported by funding from the Creutzfeldt-Jakob Disease FoundationInc.(USA)+4 种基金the Alzheimer Forschung Initiative (AFI e.V.,Germany)the Werner-Otto-Stiftung (Hamburg,Germany)(all to HCA)the China Scholarship Council (to FS)European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement N°101030402 (to AMA)Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Center (CRC) 877"Proteolysis as a regulatory event in pathophysiology"(to MG)。
文摘In the last decades,the role of the prion protein(PrP) in neurodegenerative diseases has been intensively investigated,initially in prion diseases of humans(e.g., Creutzfeldt-J akob disease) and animals(e.g.,scrapie in sheep,chronic wasting disease in deer and elk,or "mad cow disease" in cattle).Templated misfolding of physiological cellular prion protein(PrPC) into an aggregation-prone isoform(termed PrP "Scrapie"(PrPSc)),self-re plication and spreading of the latter inside the brain and to peripheral tissues,and the associated formation of infectious proteopathic seeds(termed "prions")are among the essential pathogenic mechanisms underlying this group of fatal and transmissible spongiform encephalopathies.Late r,key roles of the correctly folded PrPCwere identified in more common human brain diseases(such as Alzheimer s disease or Parkinson’s disease) associated with the misfolding and/or accumulation of other proteins(such as amyloid-β,tau or α-synuclein,respectively).PrPChas also been linked with n euro protective and regenerative functions,for instance in hypoxic/ischemic conditions such as stroke.However,despite a mixed "bouquet" of suggested functions,our understanding of pathological and,especially,physiological roles played by PrPCin the brain and beyond is ce rtainly incomplete.Interactions with various other proteins at the cell surfa ce or within intracellular compartments may account for the functional diversity linked with PrPC.Moreover,conserved endogenous proteolytic processing of PrPCgenerates seve ral defined PrPCfragments,possibly holding intrinsic functions in physiological and pathological conditions,thus making the "true and complete biology" of this protein more complicated to be elucidated.Here,we focus on one of those released PrPCfragments,namely shed PrP(sPrP),generated by a membrane-proximate ADAM10-mediated cleavage event at the cell surfa ce.Similar to other soluble PrP fragments(such as the N1 fragment representing PrP’s released N-terminal tail upon the major α-cleavage event)or expe rimentally employed recombinant PrP,sPrP is being suggested to act n euro protective in Alzheimer’s disease and other protein misfolding diseases.Seve ral lines of evidence on extracellular PrPC(fragments) suggest that induction of PrPCrelease co uld be a future therapeutic option in various brain disorders.Our recent identification of a substrate-specific approach to stimulate the shedding by ADAM 10,based on ligands binding to cell surface PrPC,may further set the stage for research into this direction.