The conformal transformation solution is presented for the attenuation constant ofTEM transmission lines which can be mapped into the coaxial or the parallel plate lines by certainconformal transformations including t...The conformal transformation solution is presented for the attenuation constant ofTEM transmission lines which can be mapped into the coaxial or the parallel plate lines by certainconformal transformations including the numerical ones.The analytic and numerical results ofsome examples are also given.展开更多
The structures of the space switching and the wavelength switching optical cross connect (OXC) nodes which are based on the arrayed waveguide grating (AWG) multiplexer are analyzed.By the matrix transformation relatio...The structures of the space switching and the wavelength switching optical cross connect (OXC) nodes which are based on the arrayed waveguide grating (AWG) multiplexer are analyzed.By the matrix transformation relation between the input and output wavelengths of the AWG multiplexer, the wavelength transmission routings of the space switching and wavelength switching OXC nodes are determined.展开更多
Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home a...Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home and abroad were introduced.Moreover,the problems existing in the on-line monitoring of electromagnetic environment were expounded,and the development prospect was forecasted.展开更多
Through the reliability analysis on transmission and transformation facilities with 220 kV or above voltage level in China in 2010, particularly by investigating the planned and unplanned outage of transformers, circu...Through the reliability analysis on transmission and transformation facilities with 220 kV or above voltage level in China in 2010, particularly by investigating the planned and unplanned outage of transformers, circuit breakers and overhead transmission lines with 220 kV, 330 kV and 500 kV level, the weak parts that may influence the operational reliabilities are figured out from technical and liability causes. Moreover, through the research on the device models and comparison of performance indices between domestic and imported devices, the trend of the reliability changes are identified so that the references can be provided for power enterprises to determine corresponding effective reliability measures during planning, design, implementation and production stages.展开更多
This article introduces the features ofequipment and operating condition of 500kV transmission lines and substations inNortheast China Electric Power Networkfrom the operation Point of view. The operatingand technical...This article introduces the features ofequipment and operating condition of 500kV transmission lines and substations inNortheast China Electric Power Networkfrom the operation Point of view. The operatingand technical levels of domestic equipment arethe focus of discussion in the article.展开更多
SEC is not only one of the largest enterprise groups in China that engaged in designing and manufacturing of power generating equipment, but also is noted for designing and manufacturing power transmission and distrib...SEC is not only one of the largest enterprise groups in China that engaged in designing and manufacturing of power generating equipment, but also is noted for designing and manufacturing power transmission and distribution equipment. Shanghai Power Transmission and Distribution Equipment Corporation is a subsidiary of SEC. It consists of key enterprises, including Shanghai Hua Tong Switchgear Works, Shanghai Relay Plant,Shanghai Instrument Transformer Works, Shang-展开更多
China’s power transmission equipment industry has formed, through technical innovation and development in past several decades especially in the period from the "6th Five Year Plan" to "8th Five Year P...China’s power transmission equipment industry has formed, through technical innovation and development in past several decades especially in the period from the "6th Five Year Plan" to "8th Five Year Plan", a capability in furnishing equipments for 15,000 MW yearly key power transmission, power networks and substations project with voltage up to 500 kV. These achievements展开更多
A new approach, based on the waveform relaxation technique and fast Walsh trans-form, is presented to analyze the coupled loosy transmission lines (CLTL) with arbitrary terminalnetworks. The simulation accuracy of the...A new approach, based on the waveform relaxation technique and fast Walsh trans-form, is presented to analyze the coupled loosy transmission lines (CLTL) with arbitrary terminalnetworks. The simulation accuracy of the new method can be greatly improved, the disadvantagewhich always exists in previous methods can be avoided and a considerable saving in time andmemory of CPU is obtained.展开更多
Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to ...Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.展开更多
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di...In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.展开更多
Based on the current situation of the domestic transformer equipment selection, the paper analyses the SH15, S11 and S9 transformer from the angles of annual running power consumption, payback period, energy efficienc...Based on the current situation of the domestic transformer equipment selection, the paper analyses the SH15, S11 and S9 transformer from the angles of annual running power consumption, payback period, energy efficiency of the transformer, furthermore, determine the best optimal capacity, load factor and update Year of the SH15-type transformers. Example analysis results show that, from the point of view of the technical and economic the SH15-type transformer has better economic and environmental benefits, and large capacity SH15 transformer better comprehensive benefits.展开更多
This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various fa...This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance.展开更多
Based on predictions on Chinese power development in the coming 20 years, this paper introduces the emphases and key technologies in power sources and power network construction, and puts for ward the major tasks and ...Based on predictions on Chinese power development in the coming 20 years, this paper introduces the emphases and key technologies in power sources and power network construction, and puts for ward the major tasks and technological orientation for machinery manufacturers to supply qualified equipment to China power industry.展开更多
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic ...Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.展开更多
To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation consi...To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation considered. And the dynamic unbalance and impact turbulence excita tion from equipment were taken into account in a single stage and twostage vibration isolation system, respectively. Results show that the excitation transferred to carbody increases with suspension stiffness but decreases with the equipment mass increasing; the vibration transmission can be reduced by increasing the equipment mass or reduce the suspension stiffness. To avoid vibration resonance, the dynamic unbalance frequency of equipment should be out of the possible range of the carbody flexible modes, and a small stiffness should be applied to reduce the impact tur bulence. A small stiffness, however, would result in a large movement of the equipment which is limited by the static deflection requirement, while a great stiffness will transfer high frequency vibration. Therefore, a preferred stiffness should make the suspension frequency of equipment a bit greater than the first bending mode of carbody. Additionally, a 3D rigidflexible coupled dynamics model was built to verify the mathematical analysis, and they show good agreements. Results show that a twostage isolation could reduce the excitation transmission and make the vibration of carbody and equipment acceptable.展开更多
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr...Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.展开更多
Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of desig...Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of design in engineering.The objective of this paper is to present a simplified model to estimate these important wave parameters.This paper describes the incorporation of wave transmission and overtopping module into a wave model for multi-directional random wave transformation based on energy balance equation with the consideration of wave shoaling,refraction,diffraction,reflection and breaking.Wen's frequency spectrum and non-linear dispersion relation are also included in this model.The influence of wave parameters of transmitted waves through a smooth submerged breakwater has been considered in this model with an improved description of the transmitted wave spectrum of van der Meer et al.(2000) by Carevic et al.(2013).This improved wave model has been validated through available laboratory experiments.Then the verified model is applied to investigate the effect of wave transmission and overtopping on wave heights behind low-crested breakwaters in a project for nearshore area.Numerical calculations are carried out with and without consideration of the wave transmission and overtopping,and comparison of them indicates that there is a considerable difference in wave height and thus it is important to include wave transmission and overtopping in modelling nearshore wave field with the presence of low-crested breakwaters.Therefore,this model can provide a general estimate of the desired wave field parameters,which is adequate for engineers at the preliminary design stage of low-crested breakwaters.展开更多
文摘The conformal transformation solution is presented for the attenuation constant ofTEM transmission lines which can be mapped into the coaxial or the parallel plate lines by certainconformal transformations including the numerical ones.The analytic and numerical results ofsome examples are also given.
基金NationalKeyLabofBroadBandFiberTransmissionandCommunicatonSystemTechnology ElectronicUniversityofScienceandTechnology China
文摘The structures of the space switching and the wavelength switching optical cross connect (OXC) nodes which are based on the arrayed waveguide grating (AWG) multiplexer are analyzed.By the matrix transformation relation between the input and output wavelengths of the AWG multiplexer, the wavelength transmission routings of the space switching and wavelength switching OXC nodes are determined.
基金Supported by the Open Project of Jiangsu Key Laboratory of Environmental Engineering(ZX2017005)
文摘Based on the collection of relevant literature and cases,the research and application status of on-line monitoring technology for electromagnetic environment of power transmission and transformation projects at home and abroad were introduced.Moreover,the problems existing in the on-line monitoring of electromagnetic environment were expounded,and the development prospect was forecasted.
文摘Through the reliability analysis on transmission and transformation facilities with 220 kV or above voltage level in China in 2010, particularly by investigating the planned and unplanned outage of transformers, circuit breakers and overhead transmission lines with 220 kV, 330 kV and 500 kV level, the weak parts that may influence the operational reliabilities are figured out from technical and liability causes. Moreover, through the research on the device models and comparison of performance indices between domestic and imported devices, the trend of the reliability changes are identified so that the references can be provided for power enterprises to determine corresponding effective reliability measures during planning, design, implementation and production stages.
文摘This article introduces the features ofequipment and operating condition of 500kV transmission lines and substations inNortheast China Electric Power Networkfrom the operation Point of view. The operatingand technical levels of domestic equipment arethe focus of discussion in the article.
文摘SEC is not only one of the largest enterprise groups in China that engaged in designing and manufacturing of power generating equipment, but also is noted for designing and manufacturing power transmission and distribution equipment. Shanghai Power Transmission and Distribution Equipment Corporation is a subsidiary of SEC. It consists of key enterprises, including Shanghai Hua Tong Switchgear Works, Shanghai Relay Plant,Shanghai Instrument Transformer Works, Shang-
文摘China’s power transmission equipment industry has formed, through technical innovation and development in past several decades especially in the period from the "6th Five Year Plan" to "8th Five Year Plan", a capability in furnishing equipments for 15,000 MW yearly key power transmission, power networks and substations project with voltage up to 500 kV. These achievements
文摘A new approach, based on the waveform relaxation technique and fast Walsh trans-form, is presented to analyze the coupled loosy transmission lines (CLTL) with arbitrary terminalnetworks. The simulation accuracy of the new method can be greatly improved, the disadvantagewhich always exists in previous methods can be avoided and a considerable saving in time andmemory of CPU is obtained.
基金supported by National Natural Science Foundation of China(No.50637010)
文摘Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.
文摘In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.
文摘Based on the current situation of the domestic transformer equipment selection, the paper analyses the SH15, S11 and S9 transformer from the angles of annual running power consumption, payback period, energy efficiency of the transformer, furthermore, determine the best optimal capacity, load factor and update Year of the SH15-type transformers. Example analysis results show that, from the point of view of the technical and economic the SH15-type transformer has better economic and environmental benefits, and large capacity SH15 transformer better comprehensive benefits.
文摘This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance.
文摘Based on predictions on Chinese power development in the coming 20 years, this paper introduces the emphases and key technologies in power sources and power network construction, and puts for ward the major tasks and technological orientation for machinery manufacturers to supply qualified equipment to China power industry.
基金Scientific Research Fund of IEM,CEA under Grant Nos.2016B09,2014B12China Natural Science Foundation under Grant Nos.51478442,51408565
文摘Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
基金supported by the National Science and Technology Support Program of China (No. 2011 BAG10B01)the National Key Basic Research Program of China (No. 2011CB711100)+1 种基金the National Science and Technology Support Program of China (No. U1334206)the New Century Excellent Talents of Ministry of Education funded project (No. NCET-10-0664)
文摘To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation considered. And the dynamic unbalance and impact turbulence excita tion from equipment were taken into account in a single stage and twostage vibration isolation system, respectively. Results show that the excitation transferred to carbody increases with suspension stiffness but decreases with the equipment mass increasing; the vibration transmission can be reduced by increasing the equipment mass or reduce the suspension stiffness. To avoid vibration resonance, the dynamic unbalance frequency of equipment should be out of the possible range of the carbody flexible modes, and a small stiffness should be applied to reduce the impact tur bulence. A small stiffness, however, would result in a large movement of the equipment which is limited by the static deflection requirement, while a great stiffness will transfer high frequency vibration. Therefore, a preferred stiffness should make the suspension frequency of equipment a bit greater than the first bending mode of carbody. Additionally, a 3D rigidflexible coupled dynamics model was built to verify the mathematical analysis, and they show good agreements. Results show that a twostage isolation could reduce the excitation transmission and make the vibration of carbody and equipment acceptable.
基金Supported by National Natural Science Foundation of China(Grant No51605229)Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.16KJB460016)+1 种基金the“333”Project of Jiangsu Province,China(Grant No.BRA2015310)China Postdoctora Science Foundation(Grant No.2016M601844)
文摘Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
基金supported by the NSFC-Shandong Joint Fund Project(No.U1706226)Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province(No.ZR2016EEB06)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents
文摘Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of design in engineering.The objective of this paper is to present a simplified model to estimate these important wave parameters.This paper describes the incorporation of wave transmission and overtopping module into a wave model for multi-directional random wave transformation based on energy balance equation with the consideration of wave shoaling,refraction,diffraction,reflection and breaking.Wen's frequency spectrum and non-linear dispersion relation are also included in this model.The influence of wave parameters of transmitted waves through a smooth submerged breakwater has been considered in this model with an improved description of the transmitted wave spectrum of van der Meer et al.(2000) by Carevic et al.(2013).This improved wave model has been validated through available laboratory experiments.Then the verified model is applied to investigate the effect of wave transmission and overtopping on wave heights behind low-crested breakwaters in a project for nearshore area.Numerical calculations are carried out with and without consideration of the wave transmission and overtopping,and comparison of them indicates that there is a considerable difference in wave height and thus it is important to include wave transmission and overtopping in modelling nearshore wave field with the presence of low-crested breakwaters.Therefore,this model can provide a general estimate of the desired wave field parameters,which is adequate for engineers at the preliminary design stage of low-crested breakwaters.