In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which...A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion.展开更多
We develop a rapid and convenient experimental method of absolutely calibrating the transmission of an x-ray flatresponse filter. The calibration experiment is performed on a small laser-target facility, and a set of ...We develop a rapid and convenient experimental method of absolutely calibrating the transmission of an x-ray flatresponse filter. The calibration experiment is performed on a small laser-target facility, and a set of high resolution holographic flat-field grating spectrometers is used as a discrimination system of the laser-produced x-ray source. Given that the holographic flat-field grating has a relatively large width, the grating is divided into two regions for use in that direction,where one region has the filter added and the other region does not. The filter transmission is determined by dividing the x-ray signal counts detected when the filter is in the line of sight by those detected when the filter is out of the line of sight.We find that the calibration results of this experiment agree with the calibration results using a synchrotron radiation source,as well as simulation results. Our method is not only highly reliable but also rapid and convenient.展开更多
zinc cadmium thiocyanate (ZCTC), ZnCd(SCN)_4, has been discoveredas a UV second-order nonlinear optical coordination crystal. Titsthermal and transmission Properties are reported. The thermaldecomposition is character...zinc cadmium thiocyanate (ZCTC), ZnCd(SCN)_4, has been discoveredas a UV second-order nonlinear optical coordination crystal. Titsthermal and transmission Properties are reported. The thermaldecomposition is characterized by using the X-ray Powder diffraction(XRPD) and infrared (IR) spectroscopy at room temperature. TheAbsorptions of intrinsic ions and ZCTC in a solution state arediscussed as well as Transmission properties of the ZCTC crystal. Aneffective method of reducing the surface Reflection loss of ZCTCcrystal is introduced.展开更多
This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray ...This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.展开更多
In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR ...In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.展开更多
Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode ...Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.展开更多
Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral ra...Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral range and provide a high spatial and temporal resolution.展开更多
Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can b...Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.展开更多
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
Muon radiography is a promising technique for imaging the internal density structures of targets such as tunnels,pyramids,and volcanoes up to a scale of a few hundred meters by measuring the flux attenuation of cosmic...Muon radiography is a promising technique for imaging the internal density structures of targets such as tunnels,pyramids,and volcanoes up to a scale of a few hundred meters by measuring the flux attenuation of cosmic ray muons after they have traveled through these targets.In this study,we conducted experimental muon radiography of one of the volcanoes in the Wudalianchi area in Northeast China to image its internal density structure.The muon detector used in this study was composed of plastic scintillators and silicon photomultipliers.After approximately one and a half months of observing the crater and conduit of the Laoheishan volcano cone in Wudalianchi from September 23^(rd) to November 10^(th) 2019,more than 3 million muon tracks fulfilling the data selection criteria were collected.Based on the muon samples and high-resolution topography obtained through aerial photogrammetry using an unmanned aerial vehicle,a density image of the Laoheishan volcano cone was constructed.The results obtained in this experiment demonstrate the feasibility of using a radiography technique based on plastic scintillator detectors.To obtain the density distribution,we performed a detailed background analysis and found that low-energy charged particles dominated the background noise.Relatively higher densities were found near the surface of the volcanic cone,whereas relatively lower densities were found near the center of the volcanic cone.The experiment in this study is the first volcano muon tomography study performed in China.Our work provides an important reference for future research.展开更多
In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (S...In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.展开更多
In this paper, a simple and facile surfactant assisted combustion synthesis is reported for the ZnO nanoparticles. The synthesis of ZnO-NPs has been done with the assistance of non-ionic surfactant TWEEN 80. The effec...In this paper, a simple and facile surfactant assisted combustion synthesis is reported for the ZnO nanoparticles. The synthesis of ZnO-NPs has been done with the assistance of non-ionic surfactant TWEEN 80. The effect of fuel variations and comparative study of fuel urea and glycine have been studied by using characterization techniques like X-ray diffraction (XRD), transmission electron microscope (TEM) and particle size analyzer. From XRD, it indicates the presence of hexagonal wurtzite structure for ZnO-NPs. Using X-ray broadening, crystallite sizes and lattice strain on the peak broadening of ZnO-NPs were studied by using Williamson-Hall (W-H) analysis and size-strain plot. Strain, stress and energy density parameters were calculated for the XRD peaks of all the samples using (UDM), uniform stress deformation model (USDM), uniform deformation energy density model (UDEDM) and by the size-strain plot method (SSP). The results of mean particle size showed an inter correlation with W-H analysis, SSP, particle analyzer and TEM results.展开更多
Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography(MIR) based on geometrical optics approximation. Different Poisson noise levels were adde...Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography(MIR) based on geometrical optics approximation. Different Poisson noise levels were added to the simulation, and the results show that Poisson noise deteriorates the extraction results, with the degree of refraction > USAXS > absorption. The effects of Poisson noise are negligible when the detector's photon counts are about 1000 ph/pixel. A wider sampling range allows more accurate extraction results, but a narrower sampling range has a better signal-to-noise ratio for high Poisson noise levels, e.g., PN(10). The sampling interval can be suitably increased with a minor impact on the extraction results for low Poisson noise levels(PN(10000)). The extraction results are incomplete because a portion of the samplerocking curve is beyond the sampling range. This induces artifacts in the images, especially for strong refraction and USAXS signals. The artifacts are not obvious when the refraction angle and standard deviation of the USAXS are smaller than the sampling range by an order of magnitude.In general, the absorption barely affects the extraction results. However, additional Poisson noise will be generated when the sample is made of high-Z elements or has a large size due to the strong absorption. Here, the extraction results will deteriorate, and additional exposure time is required. This simulation provides important details on practical applications of MIR, with improvements in information extraction.展开更多
To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography us...To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography using iodine (I) and gadolinium (Gd) media. DE radiography was performed using an X-ray generator with a 0.1-mm-diam-focus tube and a 0.5-mm-thick beryllium window, a 1.0-mm-thick aluminum filter for absorbing extremely low-energy photons, and the CdTe array detector with pixel dimensions of 0.1 × 0.1 mm2. Each pixel has a charge-sensitive amplifier and a dual-energy counter, and the event pulses from the amplifier are sent to the counter to determine two threshold energies. The tube current was a maximum value of 0.50 mA, and the tube voltages for I- and Gd-K-edge radiograms were 60 and 80 kV, respectively. In the I-K-edge radiography of a dog-heart phantom at an energy range of 33 - 60 keV, the muscle density increased, and fine coronary arteries were visible. Utilizing Gd-K-edge radiography of a rabbit head phantom at an energy range of 50 - 80 keV, the muscle density increased, and fine blood vessels in the nose were observed at high contrasts. Using the DE array detector, we confirmed the image-contrast variations with changes in the threshold energy.展开更多
The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated fro...The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.展开更多
Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiograp...Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.展开更多
To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit...To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.展开更多
Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances i...Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.展开更多
We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and tempora...We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.展开更多
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
基金supported by National Natural Science Foundation of China(Nos.11405158 and 11435011)Development Foundation of China Academy of Engineering Physics(Nos.2014B0102011 and 2014B0102012)
文摘A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11405158 and 11775203)the Presidential Foundation of China Academy of Engineering Physics(Grant No.YZJJLX 2016007)
文摘We develop a rapid and convenient experimental method of absolutely calibrating the transmission of an x-ray flatresponse filter. The calibration experiment is performed on a small laser-target facility, and a set of high resolution holographic flat-field grating spectrometers is used as a discrimination system of the laser-produced x-ray source. Given that the holographic flat-field grating has a relatively large width, the grating is divided into two regions for use in that direction,where one region has the filter added and the other region does not. The filter transmission is determined by dividing the x-ray signal counts detected when the filter is in the line of sight by those detected when the filter is out of the line of sight.We find that the calibration results of this experiment agree with the calibration results using a synchrotron radiation source,as well as simulation results. Our method is not only highly reliable but also rapid and convenient.
文摘zinc cadmium thiocyanate (ZCTC), ZnCd(SCN)_4, has been discoveredas a UV second-order nonlinear optical coordination crystal. Titsthermal and transmission Properties are reported. The thermaldecomposition is characterized by using the X-ray Powder diffraction(XRPD) and infrared (IR) spectroscopy at room temperature. TheAbsorptions of intrinsic ions and ZCTC in a solution state arediscussed as well as Transmission properties of the ZCTC crystal. Aneffective method of reducing the surface Reflection loss of ZCTCcrystal is introduced.
基金Project supported by the National Natural Science Foundation of China (Grant No.10576006)the Foundation of China Academy of Engineering Physics (Grant Nos.2007A01001 and 2009B0202020)
文摘This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.
文摘In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.
基金This work was partially supported by Quaid-i-Azam University Research Grant, Ministry of Science & Technology Grant, Pakistan Science Foundation Project No. PSF/R&D/C-QU/Phys (199), Higher Education Commission Project for Plasma Physics, Pakistan Atomic
文摘Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.
文摘Two methods of using the X-pinch as a source of X-ray radiation for radiography of biological objects are presented. X-pinches are found to be a very flexible method for generation of radiation over a wide spectral range and provide a high spatial and temporal resolution.
文摘Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
基金supported by the National Natural Science Foundation of China(Nos.41974064,42174076 and U1865206)Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001).
文摘Muon radiography is a promising technique for imaging the internal density structures of targets such as tunnels,pyramids,and volcanoes up to a scale of a few hundred meters by measuring the flux attenuation of cosmic ray muons after they have traveled through these targets.In this study,we conducted experimental muon radiography of one of the volcanoes in the Wudalianchi area in Northeast China to image its internal density structure.The muon detector used in this study was composed of plastic scintillators and silicon photomultipliers.After approximately one and a half months of observing the crater and conduit of the Laoheishan volcano cone in Wudalianchi from September 23^(rd) to November 10^(th) 2019,more than 3 million muon tracks fulfilling the data selection criteria were collected.Based on the muon samples and high-resolution topography obtained through aerial photogrammetry using an unmanned aerial vehicle,a density image of the Laoheishan volcano cone was constructed.The results obtained in this experiment demonstrate the feasibility of using a radiography technique based on plastic scintillator detectors.To obtain the density distribution,we performed a detailed background analysis and found that low-energy charged particles dominated the background noise.Relatively higher densities were found near the surface of the volcanic cone,whereas relatively lower densities were found near the center of the volcanic cone.The experiment in this study is the first volcano muon tomography study performed in China.Our work provides an important reference for future research.
文摘In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.
文摘In this paper, a simple and facile surfactant assisted combustion synthesis is reported for the ZnO nanoparticles. The synthesis of ZnO-NPs has been done with the assistance of non-ionic surfactant TWEEN 80. The effect of fuel variations and comparative study of fuel urea and glycine have been studied by using characterization techniques like X-ray diffraction (XRD), transmission electron microscope (TEM) and particle size analyzer. From XRD, it indicates the presence of hexagonal wurtzite structure for ZnO-NPs. Using X-ray broadening, crystallite sizes and lattice strain on the peak broadening of ZnO-NPs were studied by using Williamson-Hall (W-H) analysis and size-strain plot. Strain, stress and energy density parameters were calculated for the XRD peaks of all the samples using (UDM), uniform stress deformation model (USDM), uniform deformation energy density model (UDEDM) and by the size-strain plot method (SSP). The results of mean particle size showed an inter correlation with W-H analysis, SSP, particle analyzer and TEM results.
基金supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Nos.lzujbky-2016-208 and lzujbky-2016-32)the Lanzhou University Construction Project for Innovation and Cooperative Education Base
文摘Simulation experiments were performed to investigate the characteristics of information extraction in multiple-image radiography(MIR) based on geometrical optics approximation. Different Poisson noise levels were added to the simulation, and the results show that Poisson noise deteriorates the extraction results, with the degree of refraction > USAXS > absorption. The effects of Poisson noise are negligible when the detector's photon counts are about 1000 ph/pixel. A wider sampling range allows more accurate extraction results, but a narrower sampling range has a better signal-to-noise ratio for high Poisson noise levels, e.g., PN(10). The sampling interval can be suitably increased with a minor impact on the extraction results for low Poisson noise levels(PN(10000)). The extraction results are incomplete because a portion of the samplerocking curve is beyond the sampling range. This induces artifacts in the images, especially for strong refraction and USAXS signals. The artifacts are not obvious when the refraction angle and standard deviation of the USAXS are smaller than the sampling range by an order of magnitude.In general, the absorption barely affects the extraction results. However, additional Poisson noise will be generated when the sample is made of high-Z elements or has a large size due to the strong absorption. Here, the extraction results will deteriorate, and additional exposure time is required. This simulation provides important details on practical applications of MIR, with improvements in information extraction.
文摘To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography using iodine (I) and gadolinium (Gd) media. DE radiography was performed using an X-ray generator with a 0.1-mm-diam-focus tube and a 0.5-mm-thick beryllium window, a 1.0-mm-thick aluminum filter for absorbing extremely low-energy photons, and the CdTe array detector with pixel dimensions of 0.1 × 0.1 mm2. Each pixel has a charge-sensitive amplifier and a dual-energy counter, and the event pulses from the amplifier are sent to the counter to determine two threshold energies. The tube current was a maximum value of 0.50 mA, and the tube voltages for I- and Gd-K-edge radiograms were 60 and 80 kV, respectively. In the I-K-edge radiography of a dog-heart phantom at an energy range of 33 - 60 keV, the muscle density increased, and fine coronary arteries were visible. Utilizing Gd-K-edge radiography of a rabbit head phantom at an energy range of 50 - 80 keV, the muscle density increased, and fine blood vessels in the nose were observed at high contrasts. Using the DE array detector, we confirmed the image-contrast variations with changes in the threshold energy.
文摘The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.
文摘Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)。
文摘To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.
文摘Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.
基金Project supported by the staff of the Shenguang-Ⅱ upgrade Laser facilityThis study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25010100,XDA25010300,XDA25030100,XDA25030200,and XDA25051000)+2 种基金the National Natural Science Foundation of China(Grant Nos.11827807 and 12105359)the Open Foundation of Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences(Grant No.SGKF202105)the Chinese Academy of Sciences Youth Interdisciplinary Team(Grant No.JCTD-2022-05).
文摘We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma.