Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs fur...Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay.展开更多
Steve Pennycook is a pioneer in the application of high-resolution scanning transmission electron microscopy(STEM)and in particular the use of annular dark-field(ADF)imaging.Here we show how a general framework for 4D...Steve Pennycook is a pioneer in the application of high-resolution scanning transmission electron microscopy(STEM)and in particular the use of annular dark-field(ADF)imaging.Here we show how a general framework for 4D STEM allows clear links to be made between ADF imaging and the emerging methods for reconstructing images from 4D STEM data sets.We show that both ADF imaging and ptychographical reconstruction can be thought of in terms of integrating over the overlap regions of diffracted discs in the detector plane.This approach allows the similarities in parts of their transfer functions to be understood,though we note that the transfer functions for ptychographic imaging cannot be used as a measure of information transfer.We also show that conditions of partial spatial and temporal coherence affect ADF imaging and ptychography similarly,showing that achromatic interference can always contribute to the image in both cases,leading to a robustness to partial temporal coherence that has enabled high-resolution imaging.展开更多
This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current dens...This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm^2 has been obtained for diodes with AlAs barriers of ten monolayers, and an Ino.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.展开更多
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staini...We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.展开更多
[ Objective] The research aimed to explore the manufacturing methods of scanning electron microscope (SEM) and transmission electron microscopy (TEM) for oocyte and provide technical support for related research. ...[ Objective] The research aimed to explore the manufacturing methods of scanning electron microscope (SEM) and transmission electron microscopy (TEM) for oocyte and provide technical support for related research. [ Method] Based on GV-and MII-stage oocytes, samples of SEM and TEM were prepared respectively, then ultrastructure changes were observed. [ Result] The results showed that the method needed few samples, keep intact cell morphology and can see clear ultrastructure. [Conclusion] The method is suitable for ultrastructural observation of oocyte.展开更多
基金finically supported by the National Key Research and Development Program of China (Grant No. 2016YFB0100100)Strategic Priority Research Program of Chinese Academy of Sciences (CAS, Grant No. XDA09010101)Ningbo Key Science and Technology Projects "Industrial Application Development of Graphene" (Grant No. 2014S10008)
文摘Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay.
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Programme via Grant Agreement No.802123-HDEM(TJP)from the UK Engineering and Physical Sciences Research Council(EPSRC)via grant EP/M010708/1(PDN).
文摘Steve Pennycook is a pioneer in the application of high-resolution scanning transmission electron microscopy(STEM)and in particular the use of annular dark-field(ADF)imaging.Here we show how a general framework for 4D STEM allows clear links to be made between ADF imaging and the emerging methods for reconstructing images from 4D STEM data sets.We show that both ADF imaging and ptychographical reconstruction can be thought of in terms of integrating over the overlap regions of diffracted discs in the detector plane.This approach allows the similarities in parts of their transfer functions to be understood,though we note that the transfer functions for ptychographic imaging cannot be used as a measure of information transfer.We also show that conditions of partial spatial and temporal coherence affect ADF imaging and ptychography similarly,showing that achromatic interference can always contribute to the image in both cases,leading to a robustness to partial temporal coherence that has enabled high-resolution imaging.
文摘This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm^2 has been obtained for diodes with AlAs barriers of ten monolayers, and an Ino.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+2 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270the Natural Science Foundation of Beijing of China,No.7142164
文摘We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.
基金Supported by Natural Science Foundation of Jiangsu Province(Grant number:BK2008589)Shanghai Committee(Grant num-ber:2003 #14-1)~~
文摘[ Objective] The research aimed to explore the manufacturing methods of scanning electron microscope (SEM) and transmission electron microscopy (TEM) for oocyte and provide technical support for related research. [ Method] Based on GV-and MII-stage oocytes, samples of SEM and TEM were prepared respectively, then ultrastructure changes were observed. [ Result] The results showed that the method needed few samples, keep intact cell morphology and can see clear ultrastructure. [Conclusion] The method is suitable for ultrastructural observation of oocyte.