Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
Recent advances in scanning transmission electron microscopy(STEM)have led to increased development of multidimensional STEM imaging modalities and novel image reconstruction methods.This interest arises because the m...Recent advances in scanning transmission electron microscopy(STEM)have led to increased development of multidimensional STEM imaging modalities and novel image reconstruction methods.This interest arises because the main electron lens in a modern transmission electron microscope usually has a diffraction-space information limit that is significantly better than the real-space resolution of the same lens.This state-of-affairs is sometimes shared by other scattering methods in modern physics and contributes to a broader excitement surrounding multidimensional techniques that scan a probe while recording diffraction-space images,such as ptychography and scanning nano-beam diffraction.However,the contrasting resolution in the two spaces raises the question as to what is limiting their effective performance.Here,we examine this paradox by considering the effects of aberrations in both image and diffraction planes,and likewise separate the contributions of pre-and post-sample aberrations.This consideration provides insight into aberration-measurement techniques and might also indicate improvements for super-resolution techniques.展开更多
The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense inte...The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense interest in fundamental research and potential applications.Scanning transmission electron microscopy(STEM)has proven crucial for understanding structure–property correlations in these diverse nickelate superconducting systems.In this review,we summarize the key findings from various modes of STEM,elucidating the mechanism of different nickelate superconductors.We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the“nickel age”of superconductivity.展开更多
We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atom...We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atomic scale.This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects.We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS_(2),enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects.This approach enhances the analysis of structural variations in crystalline materials,marking a notable advancement in the characterization of structures in materials science.展开更多
Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambigu...Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.展开更多
Objective:To determine the major changes in the microstructure of Candida albicans(C. albicans) after treatment with Euphorbia hirta(E.hirta) L.leaf extract.Methods:Transmission electron microscopy was used to study t...Objective:To determine the major changes in the microstructure of Candida albicans(C. albicans) after treatment with Euphorbia hirta(E.hirta) L.leaf extract.Methods:Transmission electron microscopy was used to study the ultrastructural changes caused by E.hirta extract on C. albicans cells al various exposure time.Results:It was found that the main abnormalities were the alterations in morphology,lysis and complete collapse of the yeast cells after 36 h of exposure to the extract.Whereas the control cultures showed a typical morphology of Candida with a uniform central density,typically structured nucleus,and a cytoplasm with several elements of endomembrane system and enveloped by a regular,intact cell wall.Conclusions:The significant antifungal activity shown by this methanol extract of E.hirta L.suggests its potential against infections caused by C.albicans.The extract may be developed as an anticandidal agent.展开更多
Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research i...Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed.展开更多
Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigati...Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development.展开更多
High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important t...High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM)is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA)steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels.展开更多
Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationshi...Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel...Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.展开更多
The impact produced when cavitation bubbles collapse can be utilized to modify surfaces in the same way as shot peening and it is called cavitation peening (CP). CP is one of a number of surface modification technique...The impact produced when cavitation bubbles collapse can be utilized to modify surfaces in the same way as shot peening and it is called cavitation peening (CP). CP is one of a number of surface modification techniques used to improve the fatigue strength of metallic materials by introducing compressive residual stress. Although it has been shown by an X-ray diffraction method that CP decreases the micro-strain related to dislocations in the sub-surface of a polycrystalline material, the mechanism for this decrease is unclear. In this paper, the movement of dislocations by CP was observed using transmission electron microscopy (TEM).展开更多
Because of the low cross-section for neutron capture and its excellent structural, chemical and mechanical stability, silicon carbide (SiC) is an important material with application in the development of nuclear energ...Because of the low cross-section for neutron capture and its excellent structural, chemical and mechanical stability, silicon carbide (SiC) is an important material with application in the development of nuclear energy and waste technologies. For example, in the fourth generation of fission reactors, such as high-temperature gas-cooled reactors and gas-cooled fast reactors, TRISO-coated particle fuel is designed, because this fuel is very robust with no failures anticipated during irradiation and under accident conditions.展开更多
Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better underst...Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.展开更多
The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy....The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.展开更多
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金the U.S.Department of Energy,Office of Basic Energy Sciences(DOE-BES),Division of Materials Sciences and Engineering under contract ERKCS89.We acknowledge support for 4D-STEM performed as part of user proposal at the Center for Nanophase Materials Sciences(CNMS),which is a US Department of Energy,Office of Science,User Facility.Microscopy performed using instrumentation within ORNL’s Materials Characterization Core provided by UTBattelle,LLC,under Contract No.DE-AC05-00OR22725 with the DOE and sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory,managed by UT-Battelle,LLC,for the U.S.Department of Energy.
文摘Recent advances in scanning transmission electron microscopy(STEM)have led to increased development of multidimensional STEM imaging modalities and novel image reconstruction methods.This interest arises because the main electron lens in a modern transmission electron microscope usually has a diffraction-space information limit that is significantly better than the real-space resolution of the same lens.This state-of-affairs is sometimes shared by other scattering methods in modern physics and contributes to a broader excitement surrounding multidimensional techniques that scan a probe while recording diffraction-space images,such as ptychography and scanning nano-beam diffraction.However,the contrasting resolution in the two spaces raises the question as to what is limiting their effective performance.Here,we examine this paradox by considering the effects of aberrations in both image and diffraction planes,and likewise separate the contributions of pre-and post-sample aberrations.This consideration provides insight into aberration-measurement techniques and might also indicate improvements for super-resolution techniques.
基金the insightful discussions with Prof.Dongsheng Song.Project supported by the National Natural Science Foundation of China(Grant No.52172115)the Guangdong Provincial Key Laboratory Program from the Department of Science and Technology of Guangdong Province(Grant No.2021B1212040001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012434)Shenzhen Science and Technology Program(Grant No.20231121093057002)Natural Science Foundation of Guangdong Province,China(Grant No.2022A1515010762).
文摘The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense interest in fundamental research and potential applications.Scanning transmission electron microscopy(STEM)has proven crucial for understanding structure–property correlations in these diverse nickelate superconducting systems.In this review,we summarize the key findings from various modes of STEM,elucidating the mechanism of different nickelate superconductors.We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the“nickel age”of superconductivity.
基金funding support from the National Research Foundation (Competitive Research Program grant number NRF-CRP16-2015-05)the National University of Singapore Early Career Research Award+1 种基金supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowshipa Schmidt Sciences program。
文摘We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atomic scale.This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects.We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS_(2),enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects.This approach enhances the analysis of structural variations in crystalline materials,marking a notable advancement in the characterization of structures in materials science.
基金Natural Science Foundation of Hebei Province,Grant/Award Number:F2021203097China Postdoctoral Science Foundation,Grant/Award Numbers:2021M702756,2023T160551National Natural Science Foundation of China,Grant/Award Numbers:51971245,52022088。
文摘Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.
文摘Objective:To determine the major changes in the microstructure of Candida albicans(C. albicans) after treatment with Euphorbia hirta(E.hirta) L.leaf extract.Methods:Transmission electron microscopy was used to study the ultrastructural changes caused by E.hirta extract on C. albicans cells al various exposure time.Results:It was found that the main abnormalities were the alterations in morphology,lysis and complete collapse of the yeast cells after 36 h of exposure to the extract.Whereas the control cultures showed a typical morphology of Candida with a uniform central density,typically structured nucleus,and a cytoplasm with several elements of endomembrane system and enveloped by a regular,intact cell wall.Conclusions:The significant antifungal activity shown by this methanol extract of E.hirta L.suggests its potential against infections caused by C.albicans.The extract may be developed as an anticandidal agent.
基金the Projects of Science and Technology Commission of Shanghai Municipality(19ZR1473800 and 14DZ2260800)the Shanghai Rising-Star Program(17QA1401400)+1 种基金Young Elite Scientists Sponsorship Program by CAST(YESS)the Fundamental Research Funds for the Central Universities.
文摘Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed.
文摘Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development.
基金Supported by Startup Fund for Youngman Research at SJTU(SFYR at SJTU)National Basic Research Program of China(Grant No.2011CB012904)China Postdoctoral Science Foundation(Grant No.2013M541517)
文摘High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM)is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA)steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels.
文摘Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
基金the Beijing Municipal High Level Innovative Team Building Program (IDHT20190503)the National Natural Science Fund for Innovative Research Groups of China (51621003)the National Natural Science Foundation of China (12074017)。
文摘Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.
文摘The impact produced when cavitation bubbles collapse can be utilized to modify surfaces in the same way as shot peening and it is called cavitation peening (CP). CP is one of a number of surface modification techniques used to improve the fatigue strength of metallic materials by introducing compressive residual stress. Although it has been shown by an X-ray diffraction method that CP decreases the micro-strain related to dislocations in the sub-surface of a polycrystalline material, the mechanism for this decrease is unclear. In this paper, the movement of dislocations by CP was observed using transmission electron microscopy (TEM).
文摘Because of the low cross-section for neutron capture and its excellent structural, chemical and mechanical stability, silicon carbide (SiC) is an important material with application in the development of nuclear energy and waste technologies. For example, in the fourth generation of fission reactors, such as high-temperature gas-cooled reactors and gas-cooled fast reactors, TRISO-coated particle fuel is designed, because this fuel is very robust with no failures anticipated during irradiation and under accident conditions.
基金supported by the National Natural Science Foundation of China,No.82271747(to ZLL)Medical and Health Science and Technology Program of Zhejiang Province of China,No.2023RC048(to WL)。
文摘Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11675233,11690041,11405229,11705246,and 11505243)Chinese Academy of Sciences “Light of West China” Programthe Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020412)。
文摘The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.