This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission lin...This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.展开更多
We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qub...We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.展开更多
We propose an effective method to realize the quantum phase gate the system in which the transmon qubits are capacitively coupled to of one qubit simultaneously controlling N qubits. We use a superconducting transmiss...We propose an effective method to realize the quantum phase gate the system in which the transmon qubits are capacitively coupled to of one qubit simultaneously controlling N qubits. We use a superconducting transmission line resonator driven by a strong microwave field. In our scheme, the phase gate can be realized in a time (nanosecond-scale) much shorter than deco herence time (microsecond-scale), and it is more immune to the l/(charge noise and has longer dephasing time due to the fa vorable properties of the transmon qubits in the system.展开更多
This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs i...This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs is evaluated and posynomial functions for oscillation frequency, power dissipation, phase noise, etc. are formulated using transmission line theory. The re- sulting design problem can be posed as a geometric programJning problem, which can be efficiently solved with a convex opti- mization solver. The proposed method can compute the global optima more efficiently than the traditional iterative scheme and various design problems can be solved with the same circuit model. The globally optimal trade-off curves between competing objectives are also computed to carry out robust designs and quickly explore the design space.展开更多
We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator(TLR).Compared with the scheme firstly introduced by Wang ...We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator(TLR).Compared with the scheme firstly introduced by Wang et al.[Phys.Rev.B 81(2010) 104524],our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations,but also have much stronger coupling constant with TLR.Based on the favourable properties of transmons and TLR,our method is more feasible in experiment.展开更多
We present a scheme for implementing robust quantum gates in decoherence-free subspaces(DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achie...We present a scheme for implementing robust quantum gates in decoherence-free subspaces(DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achieved only by adjusting the qubit transition frequencies. We construct a set of logic gates on the DFS-encoded qubits to eliminate the collective noise effects, and thus the gate fidelities can be enhanced remarkably. This proposal may offer a potential approach to realize the robust quantum computing with spin qubits.展开更多
基金supported by Hunan Provincial Natural Science Foundation of China (Grant No 06JJ50014)the Key Project Foundation of the Education Commission of Hunan Province of China (Grant No 06A055)
文摘This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.
基金supported by the National Natural Science Foundations of China (Grant Nos. 10947017/A05 and 11074190)the Science Foundation of the Key Laboratory of Novel Thin Film Solar Cells, China (Grant No. KF200912)the Graduates' Innovative Scientific Research Project of Zhejiang Province, China (Grant No. 2011831)
文摘We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.
基金supported by the National Natural Science Foundation of China (Grant No. 10947017/A05)the Key Lab of Novel Thin Film Solar Cells (Grant No. KF200912)Graduates’ Innovative Scientific Research Project of Zhejiang Province (Grant No. 2011831)
文摘We propose an effective method to realize the quantum phase gate the system in which the transmon qubits are capacitively coupled to of one qubit simultaneously controlling N qubits. We use a superconducting transmission line resonator driven by a strong microwave field. In our scheme, the phase gate can be realized in a time (nanosecond-scale) much shorter than deco herence time (microsecond-scale), and it is more immune to the l/(charge noise and has longer dephasing time due to the fa vorable properties of the transmon qubits in the system.
基金Project (No 20060335065) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education, China
文摘This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs is evaluated and posynomial functions for oscillation frequency, power dissipation, phase noise, etc. are formulated using transmission line theory. The re- sulting design problem can be posed as a geometric programJning problem, which can be efficiently solved with a convex opti- mization solver. The proposed method can compute the global optima more efficiently than the traditional iterative scheme and various design problems can be solved with the same circuit model. The globally optimal trade-off curves between competing objectives are also computed to carry out robust designs and quickly explore the design space.
基金Supported by the National Natural Science Foundation of China under Grant No. 10947017/A05Key Lab of Novel Thin Film Solar Cells (KF200912)Graduates’ Innovative Scientific Research Project of Zhejiang Province under Grant No. 2011831
文摘We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator(TLR).Compared with the scheme firstly introduced by Wang et al.[Phys.Rev.B 81(2010) 104524],our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations,but also have much stronger coupling constant with TLR.Based on the favourable properties of transmons and TLR,our method is more feasible in experiment.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11047006,11304267Programs for Science and Technology Innovation Talents in Universities of Henan Province under Grant No.13HASTIT049+2 种基金Young Backbone Teachers in Universities of Henan Province under Grant No.2012GGJS-173Prominent Young Backbone Talents of Xuchang Universitythe Natural Science Foundation of Zhejiang Province under Grant No.Y6110250
文摘We present a scheme for implementing robust quantum gates in decoherence-free subspaces(DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achieved only by adjusting the qubit transition frequencies. We construct a set of logic gates on the DFS-encoded qubits to eliminate the collective noise effects, and thus the gate fidelities can be enhanced remarkably. This proposal may offer a potential approach to realize the robust quantum computing with spin qubits.