Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When th...Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure.展开更多
One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are ne...One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.展开更多
The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Proce...The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Processing algorithms to reduce various transmission limitations in coherent receiving systems.Polarization Division Multiplexed Quadrature Phase Shift Keying(PDM-QPSK)is deployed to reach high bit rates,provides modified digital clock recovery,and allows BER-Aided Constant Modulus Algorithm(BA-CMA)equalising.A Soft Decision-Forward Error Correction(SD-FEC)algorithm and a joint scheme with timing recovery and adaptive equaliser are used to achieve better performance.A compact coherent transceiver is also developed.These techniques have been applied in the largest 100 G Optical Transport Network(OTN)deployment in the world,the backbone expansion project for Phase 3 of the China Education and Research Network(CERNET),with a total transmission length of 10 000 km.展开更多
We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multipl...We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).展开更多
By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km stan...By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km standard single mode fiber (SSMF) transmission in the C- and L-bands with 25-GHz channel spacing. 368 optical channels with bandwidth spacing of 25 GHz are generated from 16 external cavity laser sources. After 160-km SSMF transmission, all tested bit error rate (BER) are under 3.8×10^-3, which can be recovered by 7% FEC threshold. Within each channel, we achieve the spectral efficiency of 6.85 bit/s/Hz in C/L band.展开更多
WDM-Pulse-position modulation technique in SI-POF transmission is proposed to overcome the limitation from mode dispersion. It can expand the flat transmission bandwidth to 80MHz with 100m-fiber length.
We propose an optical transmitter with reduced modulator driving voltage. This reduction is achieved through an on-off ratio improvement technique based on FWM. We confirmed the feasibility of the method in a 43-Gbit/...We propose an optical transmitter with reduced modulator driving voltage. This reduction is achieved through an on-off ratio improvement technique based on FWM. We confirmed the feasibility of the method in a 43-Gbit/s experiment.展开更多
We demonstrated 2.16-Tbit/s (43 Gbit/s x 54 ch) WDM transmission over 600 km of standard single-mode fiber with high spectral efficiency 0.53 bit/s/Hz using optimized optical mux/demux filters for 75-GHz channel spaci...We demonstrated 2.16-Tbit/s (43 Gbit/s x 54 ch) WDM transmission over 600 km of standard single-mode fiber with high spectral efficiency 0.53 bit/s/Hz using optimized optical mux/demux filters for 75-GHz channel spacing in a simple NRZ modulation scheme.展开更多
We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regi...We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(GrantNos.11104139,11274171,11274099,and 11204145)+1 种基金SRFDP(Grant Nos.20110091120040,20120091110001,and 20130091130004)the NaturalScience Foundation of Jiangsu Province,China(Grant No.BK2011542)
文摘Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure.
基金supported in part by National Natural Science Funds for Creative Research Groups of China under Grant No. 61421061Huawei Innovation Research ProgramOpen Research Fund in Xi’an Jiaotong University under Grant No. sklms2015015
文摘One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.
基金supported by the National Natural Science Foundation of China under Grant No. 60932004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA011301,No. 2012AA011303
文摘The explosive increase in data traffic requires networks to provide higher capacity and long-haul transmission capabilities.This paper introduces new results on high-order modulation and efficient Digital Signal Processing algorithms to reduce various transmission limitations in coherent receiving systems.Polarization Division Multiplexed Quadrature Phase Shift Keying(PDM-QPSK)is deployed to reach high bit rates,provides modified digital clock recovery,and allows BER-Aided Constant Modulus Algorithm(BA-CMA)equalising.A Soft Decision-Forward Error Correction(SD-FEC)algorithm and a joint scheme with timing recovery and adaptive equaliser are used to achieve better performance.A compact coherent transceiver is also developed.These techniques have been applied in the largest 100 G Optical Transport Network(OTN)deployment in the world,the backbone expansion project for Phase 3 of the China Education and Research Network(CERNET),with a total transmission length of 10 000 km.
基金National Program for Support of Top-Notch Young ProfessionalsNational Natural Science Foundation of China(NSFC)(11574001,11274131,61222502)Program for New Century Excellent Talents in University(NCET)(NCET-11-0182)
文摘We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).
基金supported by the National "973" Program of China(No.2010CB328300)the National "863" Program of China(No.2012AA011302)
文摘By using PDM-OFDM-16QAM modulation, all-Raman amplification, coherent detection, and 7% forward error correction (FEC) threshold, we successfully demonstrate 63-Tb/s (368× 183.3-Gb/s) signal over 160- km standard single mode fiber (SSMF) transmission in the C- and L-bands with 25-GHz channel spacing. 368 optical channels with bandwidth spacing of 25 GHz are generated from 16 external cavity laser sources. After 160-km SSMF transmission, all tested bit error rate (BER) are under 3.8×10^-3, which can be recovered by 7% FEC threshold. Within each channel, we achieve the spectral efficiency of 6.85 bit/s/Hz in C/L band.
文摘WDM-Pulse-position modulation technique in SI-POF transmission is proposed to overcome the limitation from mode dispersion. It can expand the flat transmission bandwidth to 80MHz with 100m-fiber length.
文摘We propose an optical transmitter with reduced modulator driving voltage. This reduction is achieved through an on-off ratio improvement technique based on FWM. We confirmed the feasibility of the method in a 43-Gbit/s experiment.
文摘We demonstrated 2.16-Tbit/s (43 Gbit/s x 54 ch) WDM transmission over 600 km of standard single-mode fiber with high spectral efficiency 0.53 bit/s/Hz using optimized optical mux/demux filters for 75-GHz channel spacing in a simple NRZ modulation scheme.
文摘We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.