In the traditional power transmission network planning,deterministic analysis methods are widely used.In such methods,all contingencies are deemed to have the same occurrence probability,which is not reasonable.In thi...In the traditional power transmission network planning,deterministic analysis methods are widely used.In such methods,all contingencies are deemed to have the same occurrence probability,which is not reasonable.In this paper,risk assessment is introduced to the process of transmission network planning considering the probabilistic characteristics of contingencies.Risk indices are given to determine the weak points of the transmission network based on local information,such as bus risk,line overload risk,contingency severity.The indices are calculated by the optimal cost control method based on risk theory,which can help planners to quickly determine weak points in the planning and find solution to them.For simplification,only line overload violation is considered.Finally,the proposed method is validated by an IEEE-RTS test system and a real power system in China from two aspects.In the first case,the original system is evaluated by the proposed method to find the weak points,and then four planning schemes are established,among which the best scheme is selected.In the second case,four initial planning schemes are established by combining the experiences of planners,and after the evaluation by using the proposed method,the best planning scheme is improved based on the information of weak points in the initial schemes,and the risk of improved scheme is reduced from 42 531.86 MW·h per year to 4 431.26 MW·h per year.展开更多
An approach of transmission network expan-sion planning with embedded constraints of short circuit currents and N-1 security is proposed in this paper.The problem brought on by the strong nonlinearity property of shor...An approach of transmission network expan-sion planning with embedded constraints of short circuit currents and N-1 security is proposed in this paper.The problem brought on by the strong nonlinearity property of short circuit currents is solved with a linearization method based on the DC power flow.The model can be converted to a mixed-integer linear programming problem,realizing the optimization of planning model that considers the constraints of linearized short circuit currents and N-1 security.To compensate the error caused by the assump-tions of DC power flow,the compensation factor is pro-posed.With this factor,an iterative algorithm that can compensate the linearization error is then presented.The case study based on the IEEE 118-bus system shows that the proposed model and approach can be utilized to:opti-mize the construction strategy of transmission lines;ensure the N-1 security of the network;and effectively limit the short circuit currents of the system.展开更多
Because connection number can express and process synthetic uncertainties caused by various uncertainties in the transmission network planning, a connection number model (CNM) was presented to compare the values of co...Because connection number can express and process synthetic uncertainties caused by various uncertainties in the transmission network planning, a connection number model (CNM) was presented to compare the values of connection number logically. This paper proposed a novel model for transmission network flexible planning with uncertainty. In the proposed planning model both certainty and uncertainty information were included, and the cost-benefit analysis method was used to evaluate the candidate schemes in the objective function. Its good adaptability and flexibility were illustrated through two examples.展开更多
This paper uses a novel scenario generation method for tackling the uncertainties of wind power in the transmission network expansion planning(TNEP)problem.A heuristic moment matching(HMM)method is first applied to ge...This paper uses a novel scenario generation method for tackling the uncertainties of wind power in the transmission network expansion planning(TNEP)problem.A heuristic moment matching(HMM)method is first applied to generate the typical scenarios for capturing the stochastic features of wind power,including expectation,standard deviation,skewness,kurtosis,and correlation of multiple wind farms.Then,based on the typical scenarios,a robust TNEP problem is presented and formulated.The solution of the problem is robust against all the scenarios that represent the stochastic features of wind power.Three test systems are used to verify the HMM method and is compared against Taguchi’s Orthogonal Array(OA)method.The simulation results show that the HMM method has better performance than the OA method in terms of the trade-off between robustness and economy.Additionally,the main factors influencing the planning scheme are studied,including the number of scenarios,wind farm capacity,and penalty factors,which provide a reference for system operators choosing parameters.展开更多
Transmission network expansion can significantly improve the penetration level of renewable generation.However,existing studies have not explicitly revealed and quantified the trade-off between the investment cost and...Transmission network expansion can significantly improve the penetration level of renewable generation.However,existing studies have not explicitly revealed and quantified the trade-off between the investment cost and penetration level of renewable generation.This paper proposes a distributionally robust optimization model to minimize the cost of transmission network expansion under uncertainty and maximize the penetration level of renewable generation.The proposed model includes distributionally robust joint chance constraints,which maximize the minimum expectation of the renewable utilization probability among a set of certain probability distributions within an ambiguity set.The proposed formulation yields a twostage robust optimization model with variable bounds of the uncertain sets,which is hard to solve.By applying the affine decision rule,second-order conic reformulation,and duality,we reformulate it into a single-stage standard robust optimization model and solve it efficiently via commercial solvers.Case studies are carried on the Garver 6-bus and IEEE 118-bus systems to illustrate the validity of the proposed method.展开更多
基金Supported by Major State Basic Research Program of China ("973" Program,No. 2009CB219700 and No. 2010CB23460)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20090032110064)
文摘In the traditional power transmission network planning,deterministic analysis methods are widely used.In such methods,all contingencies are deemed to have the same occurrence probability,which is not reasonable.In this paper,risk assessment is introduced to the process of transmission network planning considering the probabilistic characteristics of contingencies.Risk indices are given to determine the weak points of the transmission network based on local information,such as bus risk,line overload risk,contingency severity.The indices are calculated by the optimal cost control method based on risk theory,which can help planners to quickly determine weak points in the planning and find solution to them.For simplification,only line overload violation is considered.Finally,the proposed method is validated by an IEEE-RTS test system and a real power system in China from two aspects.In the first case,the original system is evaluated by the proposed method to find the weak points,and then four planning schemes are established,among which the best scheme is selected.In the second case,four initial planning schemes are established by combining the experiences of planners,and after the evaluation by using the proposed method,the best planning scheme is improved based on the information of weak points in the initial schemes,and the risk of improved scheme is reduced from 42 531.86 MW·h per year to 4 431.26 MW·h per year.
基金This work was supported by National Key Technology R&D Program of China(No.2013BAA01B02)National Natural Science Foundation of China(Nos.51325702,51407100).
文摘An approach of transmission network expan-sion planning with embedded constraints of short circuit currents and N-1 security is proposed in this paper.The problem brought on by the strong nonlinearity property of short circuit currents is solved with a linearization method based on the DC power flow.The model can be converted to a mixed-integer linear programming problem,realizing the optimization of planning model that considers the constraints of linearized short circuit currents and N-1 security.To compensate the error caused by the assump-tions of DC power flow,the compensation factor is pro-posed.With this factor,an iterative algorithm that can compensate the linearization error is then presented.The case study based on the IEEE 118-bus system shows that the proposed model and approach can be utilized to:opti-mize the construction strategy of transmission lines;ensure the N-1 security of the network;and effectively limit the short circuit currents of the system.
基金the National Natural Science Founda-tion of China (No. 50177017)the Shanghai Key Scienceand Technology Research Program (No. 041612012)
文摘Because connection number can express and process synthetic uncertainties caused by various uncertainties in the transmission network planning, a connection number model (CNM) was presented to compare the values of connection number logically. This paper proposed a novel model for transmission network flexible planning with uncertainty. In the proposed planning model both certainty and uncertainty information were included, and the cost-benefit analysis method was used to evaluate the candidate schemes in the objective function. Its good adaptability and flexibility were illustrated through two examples.
基金supported in part by the National Natural Science Foundation of China under Grant No.51377027The National Basic Research Program of China under Grant No.2013CB228205by Innovation Project of Guangxi Graduate Education under Grant No.YCSZ2015053.
文摘This paper uses a novel scenario generation method for tackling the uncertainties of wind power in the transmission network expansion planning(TNEP)problem.A heuristic moment matching(HMM)method is first applied to generate the typical scenarios for capturing the stochastic features of wind power,including expectation,standard deviation,skewness,kurtosis,and correlation of multiple wind farms.Then,based on the typical scenarios,a robust TNEP problem is presented and formulated.The solution of the problem is robust against all the scenarios that represent the stochastic features of wind power.Three test systems are used to verify the HMM method and is compared against Taguchi’s Orthogonal Array(OA)method.The simulation results show that the HMM method has better performance than the OA method in terms of the trade-off between robustness and economy.Additionally,the main factors influencing the planning scheme are studied,including the number of scenarios,wind farm capacity,and penalty factors,which provide a reference for system operators choosing parameters.
基金supported by the National Natural Science Foundation of China(No.52077136)。
文摘Transmission network expansion can significantly improve the penetration level of renewable generation.However,existing studies have not explicitly revealed and quantified the trade-off between the investment cost and penetration level of renewable generation.This paper proposes a distributionally robust optimization model to minimize the cost of transmission network expansion under uncertainty and maximize the penetration level of renewable generation.The proposed model includes distributionally robust joint chance constraints,which maximize the minimum expectation of the renewable utilization probability among a set of certain probability distributions within an ambiguity set.The proposed formulation yields a twostage robust optimization model with variable bounds of the uncertain sets,which is hard to solve.By applying the affine decision rule,second-order conic reformulation,and duality,we reformulate it into a single-stage standard robust optimization model and solve it efficiently via commercial solvers.Case studies are carried on the Garver 6-bus and IEEE 118-bus systems to illustrate the validity of the proposed method.