This paper investigates a Multiple-Input Multiple-Output (MIMO) scheme combining Transmit Antenna Selection and receive Maximal-Ratio Combining (TAS/MRC) in time-varying Rayleigh fading channels. We first present new ...This paper investigates a Multiple-Input Multiple-Output (MIMO) scheme combining Transmit Antenna Selection and receive Maximal-Ratio Combining (TAS/MRC) in time-varying Rayleigh fading channels. We first present new closed-form expressions for optimal received Signal-to-Noise Ratio (SNR),which is expressed in polynomial form. These are used to analyze ergodic capacity,outage probability and Bit Error Rate (BER) of TAS/MRC systems. Numerical results are presented to validate the theoretical analysis.展开更多
Investigations are directed to the development of high-power sources ofUWB (ultrawideband) radiation based on excitation of anterma arrays with bipolar voltage pulses. In the previously designed high-power UWB sourc...Investigations are directed to the development of high-power sources ofUWB (ultrawideband) radiation based on excitation of anterma arrays with bipolar voltage pulses. In the previously designed high-power UWB sources only one bipolar pulse former and different feeder systems for pulse distribution through the array elements were used. By means of this approach, a number of UWB sources were created with the bipolar voltage pulse length ranging from 0.2 to 2 ns and effective potential of radiation ranging from 0.4 to 3 MV. The approach has got a restriction related to the electrical breakdown in a bipolar voltage pulse former. A new approach to the creation of high-power UWB sources based on a multicharmel bipolar pulse former is suggested: the number of bipolar pulse formers is equal to the number of antennas in the array. The main problem in realization of this approach is a stable operation of bipolar pulse formers in order to ensure a coherent summation of radiated pulses in the far-field zone. The result of this work is the instability of-150 ps at the pulse length of 3 ns obtained in a one-channel bipolar pulse former indicating that the suggested approach is realizable.展开更多
文摘This paper investigates a Multiple-Input Multiple-Output (MIMO) scheme combining Transmit Antenna Selection and receive Maximal-Ratio Combining (TAS/MRC) in time-varying Rayleigh fading channels. We first present new closed-form expressions for optimal received Signal-to-Noise Ratio (SNR),which is expressed in polynomial form. These are used to analyze ergodic capacity,outage probability and Bit Error Rate (BER) of TAS/MRC systems. Numerical results are presented to validate the theoretical analysis.
文摘Investigations are directed to the development of high-power sources ofUWB (ultrawideband) radiation based on excitation of anterma arrays with bipolar voltage pulses. In the previously designed high-power UWB sources only one bipolar pulse former and different feeder systems for pulse distribution through the array elements were used. By means of this approach, a number of UWB sources were created with the bipolar voltage pulse length ranging from 0.2 to 2 ns and effective potential of radiation ranging from 0.4 to 3 MV. The approach has got a restriction related to the electrical breakdown in a bipolar voltage pulse former. A new approach to the creation of high-power UWB sources based on a multicharmel bipolar pulse former is suggested: the number of bipolar pulse formers is equal to the number of antennas in the array. The main problem in realization of this approach is a stable operation of bipolar pulse formers in order to ensure a coherent summation of radiated pulses in the far-field zone. The result of this work is the instability of-150 ps at the pulse length of 3 ns obtained in a one-channel bipolar pulse former indicating that the suggested approach is realizable.