For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular be...For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.展开更多
Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the opt...Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated展开更多
To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabr...To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.展开更多
TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical pr...TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.展开更多
Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In...Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.展开更多
Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like str...Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.展开更多
A general review of recent research progress in fabricating transparent conductive ZnO thin films by means of intentional doping and codoping with In, Ga, A1, Mg, Li, F, H, N, and P, divided into metals and nonmetals,...A general review of recent research progress in fabricating transparent conductive ZnO thin films by means of intentional doping and codoping with In, Ga, A1, Mg, Li, F, H, N, and P, divided into metals and nonmetals, is presented in this article. The main emphasis is placed on introducing and discussing the recent research achievements on the mechanisms of the incorporation of these impurities, and their effects on the electrical and optical properties. Lastly, this article concludes with a summary of the present state of investigations on doping elements in fabricating functional ZnO thin films for photoelectric applications, and with our personal view of the perspective of future studies on doped ZnO thin films.展开更多
Niobium-doped ZnO transparent conductive films are deposited on glass substrates by radio frequency sputtering at 300℃.The influence of O2/Ar ratio on the structural,electrical and optical properties of the as-deposi...Niobium-doped ZnO transparent conductive films are deposited on glass substrates by radio frequency sputtering at 300℃.The influence of O2/Ar ratio on the structural,electrical and optical properties of the as-deposited films is investigated by X-ray diffraction,Hall measurement and optical transmission spectroscopy.The lowest resistivity of 4.0×10-4Ω·cm is obtained from the film deposited at the O2/Ar ratio of 1/12.The average optical transmittance of the films is over 90%.展开更多
Thin films of amorphous diamond like carbon (a:DLC) were deposited by using a novel technique. By electrodeposition from methanol-camphor solution thin a:DLC films were deposited on non-conductive glass substrates and...Thin films of amorphous diamond like carbon (a:DLC) were deposited by using a novel technique. By electrodeposition from methanol-camphor solution thin a:DLC films were deposited on non-conductive glass substrates and also on high resistive Si substrates, by using a fine wire mesh electrode, at atmospheric pressure and temperature below 350 K. Thin films of a:DLC were doped by incorporation of nitrogen (a:N-DLC) and boron (a:B-DLC) using urea and boric acid with methanol-camphor solution respectively during the electrodeposition process. From transmittance measurements in the UV-VIS-NIR region, the optical energy band gap of about 1.0 eV for undoped a:DLC film, 2.12 eV for a:N-DLC and 2.0 eV for a:B-DLC films were determined. The spectra showed high transparency in the visible and NIR region. Fourier transform infrared spectroscopy (FTIR) measurements showed the appearance of various C-H and C-C bonding in the spectrum of undoped amorphous DLC film and confirmed C-N and C=N bond formation in a:N-DLC film. From the temperature variation of d.c. conductivity studies, the activation energies were determined and found to be 0.75 eV, 0.32 eV and 0.58 eV for undoped a:DLC films, a:N-DLC and a:B-DLC films respectively. Electrical resistivity at room temperature was reduced by the doping effect, from 109 Ω-cm for undoped films to 107 Ω-cm for nitrogen doped films and 108 Ω-cm for boron doped films.展开更多
Transparent conductive films(TCFs)are crucial components of solar cells.In this study,F,Cl,and Ga codoped ZnO(FCGZO)TCFs were deposited onto a glass substrate using the sol-gel spin-coating method and rapid thermal an...Transparent conductive films(TCFs)are crucial components of solar cells.In this study,F,Cl,and Ga codoped ZnO(FCGZO)TCFs were deposited onto a glass substrate using the sol-gel spin-coating method and rapid thermal annealing.The effects of F-doping content on the structural,morphological,electrical,and optical properties of FCGZO films were examined by XRD,TEM,FE-SEM,PL spectroscopy,XPS,Hall effects testing,and UVeviseNIR spectroscopy.All prepared ZnO films exhibited a hexagonal wurtzite structure and preferentially grew along the c axis perpendicular to the substrate.Changes in the doping concentration of F changed the interplanar crystal spacing and O vacancies in the film.At a doping ratio of 2%(in mole),the F,Cl,and Ga co-doped ZnO film exhibited the best photoelectric performance,with a carrier concentration of 2.62×10^(20)cm^(-3),mobility of 14.56 cm^(2)/(V·s),and resistivity of 1.64×10^(-3)Ucm.The average transmittance(AT)in the 380-1600 nm region nearly 90%with air as the reference,and the optical band gap was 3.52 eV.展开更多
Aluminium doped tin oxide films have been deposited onto glass substrates by using a simplified and low cost spray pyrolysis technique. The AI doping level varies between 0 and 30 at.% in the step of 5 at.%. The resis...Aluminium doped tin oxide films have been deposited onto glass substrates by using a simplified and low cost spray pyrolysis technique. The AI doping level varies between 0 and 30 at.% in the step of 5 at.%. The resistivity (p) is the minimum (0.38 Ω cm) for 20 at.% of AI doping. The possible mechanism behind the phenomenal zig-zag variation in resistivity with respect to AI doping is discussed in detail. The nature of conductivity changes from n-type to p-type when the AI doping level is 10 at.%. The results show that 20 at.% is the optimum doping level for good quality p-type SnO2:AI films suitable for transparent electronic devices.展开更多
Electron beam(EB) irradiation experiments on Au/ITO and ITO/Au/ITO multilayer thin films are reported.The structure and the optical-electrical properties of the samples were investigated by X-ray diffraction,atomic ...Electron beam(EB) irradiation experiments on Au/ITO and ITO/Au/ITO multilayer thin films are reported.The structure and the optical-electrical properties of the samples were investigated by X-ray diffraction,atomic force microscopy, four-point probe resistivity measurement system, and UV–vis-NIR double beam spectrometer, respectively. Those results show that the EB irradiation has the effects of improving the crystalline of samples, widening the optical band gap of both thin films, reducing the sheet resistance,and improving the transmittance of samples.展开更多
Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing...Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing temperature and time were 200 ℃ and 2-6 h, respectively. The structure of the thin films was identified by X-ray diffraction (XRD), the surface morphology and thickness of the thin films were observed by scanning electron microscopy (SEM), and the electrical performance of the thin films was measured by four-point probes. It was shown that the films with an average particle size of 27.53 nm had a preferential orientation along (002), Al3+ had replaced the position of Zn2+ in the lattice without forming the Al2O3 phase and its thickness was 20-25 μm. With the increased annealing time, the intensity of diffraction peaks was decreased, the film exhibited irregular surface morphology gradually, and the resistivity of ZAO films was increased. The lowest resistivity obtained in this study was 3.45×10-5Ω·cm.展开更多
Cu and Cu/ITO films were prepared on polyethylene terephthalate (PET) substrates with a Ga2O3 buffer layer using radio frequency (RF) and direct current (DC) magnetron sputtering. The effect of Cu layer thicknes...Cu and Cu/ITO films were prepared on polyethylene terephthalate (PET) substrates with a Ga2O3 buffer layer using radio frequency (RF) and direct current (DC) magnetron sputtering. The effect of Cu layer thickness on the optical and electrical properties of the Cu film deposited on a PET substrate with a Ga2O3 buffer layer was studied, and an appropriate Cu layer thickness of 4.2 nm was obtained. Changes in the optoelectrical properties of Cu(4.2 nm)/ITO(30 nm) films were investigated with respect to the Ga2O3 buffer layer thickness. The optical and electrical properties of the Cu/ITO films were significantly influenced by the thickness of the Ga2O3 buffer layer. A maximum transmission of 86%, sheet resistance of 45 Ω/□ and figure of merit of 3.96 × 10^-3 Ω^ -1 were achieved for Cu(4.2 nm)/ITO(30 nm) films with a Ga2O3 layer thickness of 15 nm.展开更多
基金Project supported by the Enterprise Science and Technology Correspondent for Guangdong Province,China (Grant No.GDKTP2021015200)。
文摘For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.
文摘Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated
文摘To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets(ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency(RF) magnetron sputtering.X-ray diffraction(XRD) analysis shows that the films are polycrystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the(002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 × 10^-3 Ω·cm was obtained.
文摘TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.
基金National Natural Science Foundation of China (50471004)
文摘Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.
基金Supported by the Research Fund of the International Science & Technology Cooperation Program of China(No.2011DFA52650) and Project 111(B13035)
文摘Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.
基金supported by the the Natural Science Foundation of Hebei Province,China (No.B2008000758)
文摘A general review of recent research progress in fabricating transparent conductive ZnO thin films by means of intentional doping and codoping with In, Ga, A1, Mg, Li, F, H, N, and P, divided into metals and nonmetals, is presented in this article. The main emphasis is placed on introducing and discussing the recent research achievements on the mechanisms of the incorporation of these impurities, and their effects on the electrical and optical properties. Lastly, this article concludes with a summary of the present state of investigations on doping elements in fabricating functional ZnO thin films for photoelectric applications, and with our personal view of the perspective of future studies on doped ZnO thin films.
基金Supported by the High-Tech Research and Development Program of China(Grant Nos.2007AA06Z112,2007AA03Z446)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20060183030)+1 种基金Science and Technology Office of Jilin Province(Grant No.20070709)Bureau of Science and Technology of Changchun City(Grant No.2007107)
文摘Niobium-doped ZnO transparent conductive films are deposited on glass substrates by radio frequency sputtering at 300℃.The influence of O2/Ar ratio on the structural,electrical and optical properties of the as-deposited films is investigated by X-ray diffraction,Hall measurement and optical transmission spectroscopy.The lowest resistivity of 4.0×10-4Ω·cm is obtained from the film deposited at the O2/Ar ratio of 1/12.The average optical transmittance of the films is over 90%.
文摘Thin films of amorphous diamond like carbon (a:DLC) were deposited by using a novel technique. By electrodeposition from methanol-camphor solution thin a:DLC films were deposited on non-conductive glass substrates and also on high resistive Si substrates, by using a fine wire mesh electrode, at atmospheric pressure and temperature below 350 K. Thin films of a:DLC were doped by incorporation of nitrogen (a:N-DLC) and boron (a:B-DLC) using urea and boric acid with methanol-camphor solution respectively during the electrodeposition process. From transmittance measurements in the UV-VIS-NIR region, the optical energy band gap of about 1.0 eV for undoped a:DLC film, 2.12 eV for a:N-DLC and 2.0 eV for a:B-DLC films were determined. The spectra showed high transparency in the visible and NIR region. Fourier transform infrared spectroscopy (FTIR) measurements showed the appearance of various C-H and C-C bonding in the spectrum of undoped amorphous DLC film and confirmed C-N and C=N bond formation in a:N-DLC film. From the temperature variation of d.c. conductivity studies, the activation energies were determined and found to be 0.75 eV, 0.32 eV and 0.58 eV for undoped a:DLC films, a:N-DLC and a:B-DLC films respectively. Electrical resistivity at room temperature was reduced by the doping effect, from 109 Ω-cm for undoped films to 107 Ω-cm for nitrogen doped films and 108 Ω-cm for boron doped films.
基金the Key Research and Development Projects of Hebei Province(Grant No.19214301D)the Key Project of Science and Technology Research in Higher Education Institutions of Hebei Province(Grant No.ZD2022024)+3 种基金the Natural Science Foundation of Hebei Province(Grant Nos A2019405059,A2022405002)the Starting Fund for Independent Doctoral Research of Hebei Agricultural University(PY2021005)the General Projects of Hebei North University(Grant No.XJ2021001)the Innovation and Entrepreneurship Training Program for College Students of Hebei North University(Grant Nos 202210092007,S202210092006).
文摘Transparent conductive films(TCFs)are crucial components of solar cells.In this study,F,Cl,and Ga codoped ZnO(FCGZO)TCFs were deposited onto a glass substrate using the sol-gel spin-coating method and rapid thermal annealing.The effects of F-doping content on the structural,morphological,electrical,and optical properties of FCGZO films were examined by XRD,TEM,FE-SEM,PL spectroscopy,XPS,Hall effects testing,and UVeviseNIR spectroscopy.All prepared ZnO films exhibited a hexagonal wurtzite structure and preferentially grew along the c axis perpendicular to the substrate.Changes in the doping concentration of F changed the interplanar crystal spacing and O vacancies in the film.At a doping ratio of 2%(in mole),the F,Cl,and Ga co-doped ZnO film exhibited the best photoelectric performance,with a carrier concentration of 2.62×10^(20)cm^(-3),mobility of 14.56 cm^(2)/(V·s),and resistivity of 1.64×10^(-3)Ucm.The average transmittance(AT)in the 380-1600 nm region nearly 90%with air as the reference,and the optical band gap was 3.52 eV.
基金Financial support from the University Grants Commission ofIndia through the Major Research Project(F.No.40-28/2011(SR))the DST Grant(D.O.No.SR/S2/CMP-35/2004)
文摘Aluminium doped tin oxide films have been deposited onto glass substrates by using a simplified and low cost spray pyrolysis technique. The AI doping level varies between 0 and 30 at.% in the step of 5 at.%. The resistivity (p) is the minimum (0.38 Ω cm) for 20 at.% of AI doping. The possible mechanism behind the phenomenal zig-zag variation in resistivity with respect to AI doping is discussed in detail. The nature of conductivity changes from n-type to p-type when the AI doping level is 10 at.%. The results show that 20 at.% is the optimum doping level for good quality p-type SnO2:AI films suitable for transparent electronic devices.
基金supported financially by the National Key Research and Development Program of China (No. 2016YFB1102303)the National Basic Research Program of China (973 Program) (No. 2015CB352001)the National Natural Science Foundation of China(No. 61378060)
文摘Electron beam(EB) irradiation experiments on Au/ITO and ITO/Au/ITO multilayer thin films are reported.The structure and the optical-electrical properties of the samples were investigated by X-ray diffraction,atomic force microscopy, four-point probe resistivity measurement system, and UV–vis-NIR double beam spectrometer, respectively. Those results show that the EB irradiation has the effects of improving the crystalline of samples, widening the optical band gap of both thin films, reducing the sheet resistance,and improving the transmittance of samples.
文摘Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing temperature and time were 200 ℃ and 2-6 h, respectively. The structure of the thin films was identified by X-ray diffraction (XRD), the surface morphology and thickness of the thin films were observed by scanning electron microscopy (SEM), and the electrical performance of the thin films was measured by four-point probes. It was shown that the films with an average particle size of 27.53 nm had a preferential orientation along (002), Al3+ had replaced the position of Zn2+ in the lattice without forming the Al2O3 phase and its thickness was 20-25 μm. With the increased annealing time, the intensity of diffraction peaks was decreased, the film exhibited irregular surface morphology gradually, and the resistivity of ZAO films was increased. The lowest resistivity obtained in this study was 3.45×10-5Ω·cm.
基金supported by the National Natural Science Foundation of China(No.10974077)the National Science Foundation of Shandong Province,China(No.2009ZRB01702)the Shandong Province Higher Educational Science and Technology Program,China(No.J10LA08)
文摘Cu and Cu/ITO films were prepared on polyethylene terephthalate (PET) substrates with a Ga2O3 buffer layer using radio frequency (RF) and direct current (DC) magnetron sputtering. The effect of Cu layer thickness on the optical and electrical properties of the Cu film deposited on a PET substrate with a Ga2O3 buffer layer was studied, and an appropriate Cu layer thickness of 4.2 nm was obtained. Changes in the optoelectrical properties of Cu(4.2 nm)/ITO(30 nm) films were investigated with respect to the Ga2O3 buffer layer thickness. The optical and electrical properties of the Cu/ITO films were significantly influenced by the thickness of the Ga2O3 buffer layer. A maximum transmission of 86%, sheet resistance of 45 Ω/□ and figure of merit of 3.96 × 10^-3 Ω^ -1 were achieved for Cu(4.2 nm)/ITO(30 nm) films with a Ga2O3 layer thickness of 15 nm.