High-quality neodymium-doped yttrium aluminum garnet(Nd:YAG)transparent ceramic(4.0 mole percent)was fabricated by a solid-state reaction method and vacuum sintering.The microstructure,optical transmittance,spectral p...High-quality neodymium-doped yttrium aluminum garnet(Nd:YAG)transparent ceramic(4.0 mole percent)was fabricated by a solid-state reaction method and vacuum sintering.The microstructure,optical transmittance,spectral properties and laser performance were investigated.The average grain size of the sample is about 10 mm.The transmittance of a 2.8-mm thick sample reaches 79.5%at the laser wavelength of 1064 nm.The highest absorption peak is centered at 807 nm and the absorption coefficient is 13.9 cm^(-1).The absorption coefficient at the laser wavelength is 0.2 cm^(-1).The main emission peak is at 1064 nm and the fluorescence lifetime is 102 ms.A laser diode(808 nm)whose maximum output is about 1000 mW was used as a pump source and an endpumped laser experiment was performed.The 1064 nm-CW-laser output was obtained and the threshold is 733 mW.With 998 mW of maximum absorbed pump power,a laser output of 17 mW is obtained with a slope efficiency of 6.1%.展开更多
基金supported by the Key Basic Research Project of Science and Technology of Shanghai(Grant No.07DJ14001)the Applied Basic Research Programs of Science and Technology Commission Foundation of Shanghai(Grant Nos.05DZ22005 and 06DZ11417)the Innovation Project of Shanghai Institute of Ceramics,Chinese Academy of Sciences and the Fund of National Engineering Research Center for Optoelectronic Crystalline Materials(Grant No.2005DC105003).
文摘High-quality neodymium-doped yttrium aluminum garnet(Nd:YAG)transparent ceramic(4.0 mole percent)was fabricated by a solid-state reaction method and vacuum sintering.The microstructure,optical transmittance,spectral properties and laser performance were investigated.The average grain size of the sample is about 10 mm.The transmittance of a 2.8-mm thick sample reaches 79.5%at the laser wavelength of 1064 nm.The highest absorption peak is centered at 807 nm and the absorption coefficient is 13.9 cm^(-1).The absorption coefficient at the laser wavelength is 0.2 cm^(-1).The main emission peak is at 1064 nm and the fluorescence lifetime is 102 ms.A laser diode(808 nm)whose maximum output is about 1000 mW was used as a pump source and an endpumped laser experiment was performed.The 1064 nm-CW-laser output was obtained and the threshold is 733 mW.With 998 mW of maximum absorbed pump power,a laser output of 17 mW is obtained with a slope efficiency of 6.1%.