Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2...Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films.展开更多
In this study, a facile way has been proposed to prepare transparent, tough and flexible polyacrylamide (PAM) hydrogels which is composed of a dually crosslinked single network by chemical crosslinking of N,N'-meth...In this study, a facile way has been proposed to prepare transparent, tough and flexible polyacrylamide (PAM) hydrogels which is composed of a dually crosslinked single network by chemical crosslinking of N,N'-methylenebisacrylamide (BIS) and physical crosslinking of hydrophilic hexagonal boron nitride (h- BN) nanosheets. The resulting h-BN/PAM nanocomposite hydrogels are highly transparent, and exhibit significantly enhanced mechanical properties compared to the dark (GO)/PAM nanocomposite hydrogels or chemical crosslinking PAM hydrogels. Thus it opens up new opportunities for developing next- generation transparent, tough and flexible hydrogels that hold great promise in such important applications as light responsive soft robot and liquid microlenses.展开更多
文摘Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films.
基金financially supported by NSFC (Nos. 21474058 and 21274079)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University (Project No. LK1404)Tsinghua University Scientific Research Project (No. 2014Z22069)
文摘In this study, a facile way has been proposed to prepare transparent, tough and flexible polyacrylamide (PAM) hydrogels which is composed of a dually crosslinked single network by chemical crosslinking of N,N'-methylenebisacrylamide (BIS) and physical crosslinking of hydrophilic hexagonal boron nitride (h- BN) nanosheets. The resulting h-BN/PAM nanocomposite hydrogels are highly transparent, and exhibit significantly enhanced mechanical properties compared to the dark (GO)/PAM nanocomposite hydrogels or chemical crosslinking PAM hydrogels. Thus it opens up new opportunities for developing next- generation transparent, tough and flexible hydrogels that hold great promise in such important applications as light responsive soft robot and liquid microlenses.