期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Transpiration and growth responses by Eucalyptus species to progressive soil drying
1
作者 Marcel Carvalho Abreu Alvaro Augusto Vieira Soares +1 位作者 Cleverson Henrique de Freitas Fabrina Bolzan Martins 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1529-1543,共15页
The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, fe... The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves. 展开更多
关键词 Soil water deficit Fraction of transpirable soil water transpiration Seedling growth Vapor pressure deficit
下载PDF
The Heat and Mass Transfer Analysis of a Leaf 被引量:3
2
作者 Hong Ye Zhi Yuan Shuanqin Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2013年第2期170-176,共7页
Understanding the heat and mass transfer processes of plant leaves is essential for plant bionic engineering. A general thermophysical model was established for a plant leaf with particular emphasis on the transpirati... Understanding the heat and mass transfer processes of plant leaves is essential for plant bionic engineering. A general thermophysical model was established for a plant leaf with particular emphasis on the transpiration process. The model was verified by the field measured stomatal resistance and temperature of a camphor leaf. A dynamical simulation revealed that diurnal transpiration water consumption is dominated by the solar irradiance and the day-average temperature of the leaf is dominated by the ambient air temperature; transpiration plays an important role in the cooling of the leaf, in average it could dissipate around 32.9% of the total solar energy absorbed by the leaf in summer. To imitate the thermal infared characteristic of the real leaf, the up surface of the bionic leaf must have emissivity and solar absorptivity close to those of a real leaf and its shape and surface roughness must be similar to those of the real leaf. The key point is that the bionic leaf must be able to evaporate water to simulate the transpiration of a plant leaf, appropriate adsorbent can be used to realize this function. 展开更多
关键词 heat and mass transfer leaf temperature transpiration water consumption thermal infrared
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部