The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in t...The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in tomato yet.In this study,we focused on elucidate the function of SlPGR5 and SlPGR5-like photosynthetic phenotype 1(PGRL1)in tomato.We performed RNA interference and found that SlPGR5/SlPGRL1-suppressed transformants exhibited extremely low CO_(2)assimilation capacity,their photosystem I(PSI)and PSII were severely photoinhibited and chloroplasts were obviously damaged.The SlPGR5/SlPGRL1-suppressed plants almost completely inhibited CEF and Y(ND),and PSII photoinhibition may be directly related to the inability to produce sufficient proton motive force to induce NPQ.The transgenic plants overexpressing SlPGR5 and SlPGRL1 driven by 35S promoter capable alleviate photoinhibition of plants under low night temperature.The transcriptomic and proteomic analyses suggested that the nuclear gene transcription and turnover of chloroplast proteins,including the plastoglobule-related proteins,were closely related to SlPGR5/SlPGRL1 pathway dependent CEF.The bridge relationship between CEF and chloroplast quality maintenance was a novel report to our knowledge.In conclusion,these results revealed the regulatory mechanism of the SlPGR5/SlPGRL1 pathway in photoprotection and maintenance of chloroplast function in tomato,which is crucial for reduce yield loss,especially under adverse environmental conditions.展开更多
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions...BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions of their mechanism of action.We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy.Two groups of patients were included in the study:the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control.AIM To evaluate the outcomes regarding natriuretic peptide,oxidative stress,inflammation,blood pressure,heart rate,cardiac function,and body weight.METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain(GLS),N-terminal pro-brain natriuretic peptide,myeloperoxidase(MPO),high-sensitivity C-reactive protein(hsCRP),and systolic and diastolic blood pressure.To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up,a rise in stroke volume index,body mass index(BMI)decrease,and lack of heart rate increase,linear regression analysis was performed.RESULTS There was a greater reduction of MPO,hsCRP,GLS,and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up.Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI,while the predictor of stroke volume index increase was SGLT2i therapy itself.CONCLUSION SGLT2i affect body composition,reduce cardiac load,improve diastolic/systolic function,and attenuate the sympathetic response.Glycemic control contributes to the improvement of heart function,blood pressure control,oxidative stress,and reduction in inflammation.展开更多
The study evaluated the stability of an oligopeptide(Lys-Arg-Gln-Lys-Tyr-Asp,KRQKYD)and its transport mechanism by simulating gastrointestinal digestion and a model of human intestinal Caco-2 monolayer cells in vitro....The study evaluated the stability of an oligopeptide(Lys-Arg-Gln-Lys-Tyr-Asp,KRQKYD)and its transport mechanism by simulating gastrointestinal digestion and a model of human intestinal Caco-2 monolayer cells in vitro.In this study,the effects of environmental factors(temperature,pH and NaCl concentration)and simulated gastrointestinal digestion on the stability of KRQKYD were evaluated by indicators of the levels of alanine transaminase(ALT),aspartate transaminase(AST)and malondialdehyde(MDA)in an alcoholinduced hepatocyte injury model.The results showed that KRQKYD still maintained satisfactory hepatocyteprotective activity after treatment with different temperatures(20-80℃),pH(3.0-9.0),NaCl concentration(1%-7%)and simulated gastrointestinal digestion,which indicated that KRQKYD showed good stability to environmental factors and simulated gastrointestinal digestion.Furthermore,the intact KRQKYD could be absorbed in a model of Caco-2 monolayer cells with a P_(app)value of(9.70±0.53)×10^(-7)cm/s.Pretreatment with an energy inhibitor(sodium azide),a competitive peptide transporter inhibitor(Gly-Pro)and a transcytosis inhibitor wortmannin did not decrease the level of transepithelial KRQKYD transport,indicating that the transport mechanism of KRQKYD was not associated with energy dependent,vector mediated and endocytosis.The tight junction disruptor cytochalasin D significantly increased the level of transepithelial KRQKYD transport(P<0.05),suggesting that intact KRQKYD was absorbed by paracellular transport.展开更多
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i...Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.展开更多
Transportation accessibility has been treated as an important means of reducing the urban-rural income disparity.However,only a few studies have examined the effects of different types of transportation accessibility ...Transportation accessibility has been treated as an important means of reducing the urban-rural income disparity.However,only a few studies have examined the effects of different types of transportation accessibility on urban-rural income disparity and their spatial heterogeneity.Based on data from 285 prefecture-level(and above)Chinese cities in 2000,2005,2010,2015,and 2020,this study uses spatial econometric models to examine how highway accessibility and railway accessibility influence the urban-rural income disparity and to identify their spatial heterogeneity.The result reveals that highway accessibility and railway accessibility have‘coreperiphery’ring-like circle structures.The urban-rural income disparity exhibits strong spatial clustering effects.Both highway accessibility and railway accessibility are negatively associated with urban-rural income disparity,and the former having a greater effect size.Moreover,there is a substitution effect between highway accessibility and railway accessibility in the whole sample.Furthermore,these associations differ in geographic regions.In the central region,highway accessibility is more important in reducing the urban-rural income disparity,but its effect is weakened with the increase of railway accessibility.In the western region,railway accessibility has a larger effect on narrowing the urban-rural income disparity,and this effect is strengthened by the increase of highway accessibility.We conclude that improving transportation accessibility is conducive to reducing the urban-rural income disparity but its effect is spatial heterogenetic.Highways and railways should be developed in a coordinated manner to promote an integrated transport network system.展开更多
This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f...This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.展开更多
BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II...BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II,and hypoxia-induced factor(HIF)-1 expressions may be useful biomarkers for detecting primary tumors and lymph node metastasis when combined with fluorodeoxyglucose(FDG)uptake on positron emission tomography/computed tomography(PET/CT).AIM To evaluate GLUT-1,GLUT-3,HK-II,and HIF-1 expressions as biomarkers for detecting primary tumors and lymph node metastasis with 18F-FDG-PET/CT.METHODS This retrospective study included 169 patients with colorectal cancer who underwent colectomy and preoperative 18F-FDG-PET/CT at Chungbuk National University Hospital between January 2009 and May 2012.Two tissue cores from the central and peripheral areas of the tumors were obtained and were examined by a dedicated pathologist,and the expressions of GLUT-1,GLUT-3,HK-II,and HIF-1 were determined using immunohisto-chemical staining.We analyzed the correlations among their expressions,various clinicopathological factors,and the maximum standardized uptake value(SUVmax)of PET/CT.RESULTS GLUT-1 was found at the center or periphery of the tumors in 109(64.5%)of the 169 patients.GLUT-1 positivity was significantly correlated with the SUVmax of the primary tumor and lymph nodes,regardless of the biopsy site(tumor center,P<0.001 and P=0.012;tumor periphery,P=0.030 and P=0.010,respectively).GLUT-1 positivity and negativity were associated with higher and lower sensitivities of PET/CT,respectively,for the detection of lymph node metastasis,regardless of the biopsy site.GLUT3,HK-II,and HIF-1 expressions were not significantly correlated with the SUVmax of the primary tumor and lymph nodes.CONCLUSION GLUT-1 expression was significantly correlated with the SUVmax of 18F-FDG-PET/CT for primary tumors and lymph nodes.Clinicians should consider GLUT-1 expression in preoperative endoscopic biopsy in interpreting PET/CT findings.展开更多
Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have been increa-singly used with proven efficacy in patients with heart failure(HF),regardless of diabetes status.GrubićRotkvićet al recently published an obse...Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have been increa-singly used with proven efficacy in patients with heart failure(HF),regardless of diabetes status.GrubićRotkvićet al recently published an observational study on SGLT2i therapy in patients with type 2 diabetes mellitus and asymptomatic HF.They found that the use of SGLT2i led to reduced cardiac load and improved cardiovascular performance,reinforcing the evolving paradigm that SGLT2i are not merely glucose-lowering agents but are integral to the broader management of cardiovascular risk in patients with type 2 diabetes mellitus.The study by GrubićRotkvićet al contributes to the growing body of literature supporting the early use of SGLT2i in patients with diabetic cardiomyopathy,offering a potential strategy to mitigate the progression of HF.Future larger studies should be con-ducted to confirm these findings,and explore the long-term cardiovascular bene-fits of SGLT2i,particularly in asymptomatic patients at risk of developing HF.展开更多
We comment on an article by GrubićRotkvićet al published in the recent issue of the World Journal of Cardiology.We specifically focused on possible factors affecting the therapeutic effectiveness of sodium-dependent g...We comment on an article by GrubićRotkvićet al published in the recent issue of the World Journal of Cardiology.We specifically focused on possible factors affecting the therapeutic effectiveness of sodium-dependent glucose transporter inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)and their impact on comorbidities.SGLT2i inhibits SGLT2 in the proximal tubules of the kidneys,lowering blood glucose levels by inhibiting glucose reabsorption by the kidneys and causing excess glucose to be excreted in the urine.Previous studies have demonstrated a role of SGLT2i in cardiovascular function in patients with diabetes who take metformin but still have poor glycemic control.In addition,SGLT2i has been shown to be effective in anti-apoptosis,weight loss,and cardiovascular protection.Accordingly,it is feasible to treat patients with T2DM with cardiovascular or renal diseases using SGLT2i.展开更多
This article addresses the substantial findings of a study on sodium-dependent glucose transporter 2 inhibitors(SGLT2is)and their effects on myocardial function in patients with type 2 diabetes and asymptomatic heart ...This article addresses the substantial findings of a study on sodium-dependent glucose transporter 2 inhibitors(SGLT2is)and their effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure.The editorial explores the broader implications of the study findings for clinical practice,thus highlighting the pivotal role of SGLT2is in improving cardiac function,reducing oxidative stress,and attenuating inflammation.It emphasizes the importance of early intervention with SGLT2is in preventing the progression of diabetic cardio-myopathy;hence,these inhibitors have the potential to transform the manage-ment of asymptomatic heart failure in patients with diabetes.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine f...Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorec...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.展开更多
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice...In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment.展开更多
Helium transport through nanoscale inorganic mineral pores and pore throats is essential for its overall migration.To elucidate helium's transport dynamics within nanopores,we employed equilibrium and non-equilibr...Helium transport through nanoscale inorganic mineral pores and pore throats is essential for its overall migration.To elucidate helium's transport dynamics within nanopores,we employed equilibrium and non-equilibrium molecular dynamics simulations to investigate helium's static self-diffusion and pressure-driven flow in quartz slit-shaped nanopores.We also introduced water and various gases,including hydrogen,methane,ethane,nitrogen,and carbon dioxide,into the nanopores to assess their influence on helium transport.Our findings indicate minimal helium adsorption on quartz pore surfaces.Under conditions where the pore size is less than 5 nm and the pressure under 10 MPa,environmental factors markedly influence helium diffusion.Large pore sizes,high temperatures,and low gas pressures enhance helium desorption and facilitate faster diffusion.We observed a positive correlation between helium flow velocity and factors such as pore size,pressure gradient,and surface smoothness of the pores.Notably,the presence of pore water and carrier gases in quartz nanopores,which diffuse more slowly than helium,tends to reduce helium surface adsorption and slow its diffusion.Among the carrier gases studied,nitrogen showed similar adsorption capacity,diffusivity,and stability to helium,while carbon dioxide displayed the highest adsorption capacity and the slowest diffusion rate,markedly differing from helium.Based on the simulation results,we concluded that water and carrier gases primarily function as transport mediums in helium migration,moving together with helium.Nitrogen,which shares similar properties with helium,effectively assists in this co-migration process.Conversely,carbon dioxide,due to its high adsorption capacity and slow diffusion,tends to be lost during co-migration.As a result,gas reservoirs with high nitrogen levels and low carbon dioxide levels are more likely to have higher helium concentrations.Additionally,the smaller pore sizes and higher gas pressures in caprocks can impede helium's diffusion,favoring its preservation in reservoirs.Moreover,the presence of water and carrier gases significantly obstructs these pores,further hindering helium's escape.展开更多
The tolerance of rice to drought and saline stress is crucial for maintaining yields and promoting widespread cultivation.From an ethyl methanesulfonate(EMS)-mutagenized mutant library,we identified a mutant that is s...The tolerance of rice to drought and saline stress is crucial for maintaining yields and promoting widespread cultivation.From an ethyl methanesulfonate(EMS)-mutagenized mutant library,we identified a mutant that is susceptible to osmotic stress,named Osmotic Stress Sensitivity 1(Oss1).Using MutMap sequencing,we characterized the role of a choline transporter-related family gene,CTR4(Choline Transporter-Related 4),in rice’s tolerance to drought and salt stress.CTR4 plays a critical role in regulating membrane lipid synthesis.In knockout mutants,the total membrane lipid content,especially unsaturated fatty acids,was significantly reduced.Compared with the wild type,knockout mutants exhibited decreased membrane lipid stability under drought and salt stress,faster water loss,higher relative electrolyte leakage,and lower levels of proline and soluble sugars,leading to impaired tolerance to drought and salt stress.In contrast,the overexpression of CTR4 enhanced seedling tolerance to drought and saline stress.The overexpression lines displayed lower malondialdehyde levels,reduced relative electrolyte leakage,and slower rates of leaf water loss under stress conditions,thereby improving seedling survival rates during stress.Moreover,lipid synthesis gene expression was down-regulated in CTR4 mutants,potentially exacerbating membrane permeability defects and further compromising stress resistance.These findings suggest that CTR4 mediates choline transport and influences cell membrane formation,thereby enhancing rice defenses against drought and salt stress by maintaining lipid homeostasis.展开更多
Spatial spillover effects,either positive or negative,of transport infrastructure,highways/expressways,etc.,on regional economic growth are proposed.Using the panel data for 11 cities of Zhejiang province from 1994 to...Spatial spillover effects,either positive or negative,of transport infrastructure,highways/expressways,etc.,on regional economic growth are proposed.Using the panel data for 11 cities of Zhejiang province from 1994 to 2003,a spatial production function is applied to examine the spatial spillovers which can be generated as a positive output spillover from the transport infrastructure between neighboring cities.Some spatial weighted matrices are adopted to define different neighboring cities to measure how easily factors or economic activities can migrate between regions.The estimation results show that the output elasticity of the highway infrastructure in 11 cities are all insignificant at a 5% significance level;hence,highway infrastructure in a region cannot explain the same region's economic growth.On the other hand,the highway infrastructure of other contiguous regions has positive spillover effects on a same region's economic growth.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.32072651,31772356)China Agriculture Research System of MOF and MARA(Grant No.CARS23)+1 种基金Joint Fund for Innovation Enhancement of Liaoning Province(Grant No.2021-NLTS-11-01)Support Program for Young and middle-aged Scientific and technological Innovation Talents(Grant No.RC210293)。
文摘The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in tomato yet.In this study,we focused on elucidate the function of SlPGR5 and SlPGR5-like photosynthetic phenotype 1(PGRL1)in tomato.We performed RNA interference and found that SlPGR5/SlPGRL1-suppressed transformants exhibited extremely low CO_(2)assimilation capacity,their photosystem I(PSI)and PSII were severely photoinhibited and chloroplasts were obviously damaged.The SlPGR5/SlPGRL1-suppressed plants almost completely inhibited CEF and Y(ND),and PSII photoinhibition may be directly related to the inability to produce sufficient proton motive force to induce NPQ.The transgenic plants overexpressing SlPGR5 and SlPGRL1 driven by 35S promoter capable alleviate photoinhibition of plants under low night temperature.The transcriptomic and proteomic analyses suggested that the nuclear gene transcription and turnover of chloroplast proteins,including the plastoglobule-related proteins,were closely related to SlPGR5/SlPGRL1 pathway dependent CEF.The bridge relationship between CEF and chloroplast quality maintenance was a novel report to our knowledge.In conclusion,these results revealed the regulatory mechanism of the SlPGR5/SlPGRL1 pathway in photoprotection and maintenance of chloroplast function in tomato,which is crucial for reduce yield loss,especially under adverse environmental conditions.
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
文摘BACKGROUND Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have shown efficacy in reducing heart failure(HF)burden in a very heterogeneous groups of patients,raising doubts about some contemporary assumptions of their mechanism of action.We previously published a prospective observational study that evaluated mechanisms of action of SGLT2i in patients with type 2 diabetes who were in HF stages A and B on dual hypoglycemic therapy.Two groups of patients were included in the study:the ones receiving SGLT2i as an add-on agent to metformin and the others on dipeptidyl peptidase-4 inhibitors as an add-on to metformin due to suboptimal glycemic control.AIM To evaluate the outcomes regarding natriuretic peptide,oxidative stress,inflammation,blood pressure,heart rate,cardiac function,and body weight.METHODS The study outcomes were examined by dividing each treatment arm into two subgroups according to baseline parameters of global longitudinal strain(GLS),N-terminal pro-brain natriuretic peptide,myeloperoxidase(MPO),high-sensitivity C-reactive protein(hsCRP),and systolic and diastolic blood pressure.To evaluate the possible predictors of observed changes in the SGLT2i arm during follow-up,a rise in stroke volume index,body mass index(BMI)decrease,and lack of heart rate increase,linear regression analysis was performed.RESULTS There was a greater reduction of MPO,hsCRP,GLS,and blood pressure in the groups with higher baseline values of mentioned parameters irrespective of the therapeutic arm after 6 months of follow-up.Significant independent predictors of heart rate decrease were a reduction in early mitral inflow velocity to early diastolic mitral annular velocity at the interventricular septal annulus ratio and BMI,while the predictor of stroke volume index increase was SGLT2i therapy itself.CONCLUSION SGLT2i affect body composition,reduce cardiac load,improve diastolic/systolic function,and attenuate the sympathetic response.Glycemic control contributes to the improvement of heart function,blood pressure control,oxidative stress,and reduction in inflammation.
基金supported by the Major special project of Anhui Province (2021d06050001)the Major Science and Technology Project of Anhui Province (201903b06020004)+1 种基金the Natural Science Foundation of Anhui Province (2308085QC115)the Special Fund for Anhui Province Agricultural Products Processing Industry Technology System (340000211260001000420)。
文摘The study evaluated the stability of an oligopeptide(Lys-Arg-Gln-Lys-Tyr-Asp,KRQKYD)and its transport mechanism by simulating gastrointestinal digestion and a model of human intestinal Caco-2 monolayer cells in vitro.In this study,the effects of environmental factors(temperature,pH and NaCl concentration)and simulated gastrointestinal digestion on the stability of KRQKYD were evaluated by indicators of the levels of alanine transaminase(ALT),aspartate transaminase(AST)and malondialdehyde(MDA)in an alcoholinduced hepatocyte injury model.The results showed that KRQKYD still maintained satisfactory hepatocyteprotective activity after treatment with different temperatures(20-80℃),pH(3.0-9.0),NaCl concentration(1%-7%)and simulated gastrointestinal digestion,which indicated that KRQKYD showed good stability to environmental factors and simulated gastrointestinal digestion.Furthermore,the intact KRQKYD could be absorbed in a model of Caco-2 monolayer cells with a P_(app)value of(9.70±0.53)×10^(-7)cm/s.Pretreatment with an energy inhibitor(sodium azide),a competitive peptide transporter inhibitor(Gly-Pro)and a transcytosis inhibitor wortmannin did not decrease the level of transepithelial KRQKYD transport,indicating that the transport mechanism of KRQKYD was not associated with energy dependent,vector mediated and endocytosis.The tight junction disruptor cytochalasin D significantly increased the level of transepithelial KRQKYD transport(P<0.05),suggesting that intact KRQKYD was absorbed by paracellular transport.
基金supported by the National Natural Science Foundation of China(22373104 and 22293024)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(21821005)+1 种基金supported by the National Key Research and Development Program of China(2021YFE020527)support by the Distinguished Young Scholars of the National Natural Science Foundation of China(T2222022).
文摘Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.
基金Under the auspices of National Natural Science Foundation of China(No.42371214,42101184)Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.22CGA27)Funded Projects for the Academic Leaders and Academic Backbone,Shaanxi Normal University(No.18QNGG013)。
文摘Transportation accessibility has been treated as an important means of reducing the urban-rural income disparity.However,only a few studies have examined the effects of different types of transportation accessibility on urban-rural income disparity and their spatial heterogeneity.Based on data from 285 prefecture-level(and above)Chinese cities in 2000,2005,2010,2015,and 2020,this study uses spatial econometric models to examine how highway accessibility and railway accessibility influence the urban-rural income disparity and to identify their spatial heterogeneity.The result reveals that highway accessibility and railway accessibility have‘coreperiphery’ring-like circle structures.The urban-rural income disparity exhibits strong spatial clustering effects.Both highway accessibility and railway accessibility are negatively associated with urban-rural income disparity,and the former having a greater effect size.Moreover,there is a substitution effect between highway accessibility and railway accessibility in the whole sample.Furthermore,these associations differ in geographic regions.In the central region,highway accessibility is more important in reducing the urban-rural income disparity,but its effect is weakened with the increase of railway accessibility.In the western region,railway accessibility has a larger effect on narrowing the urban-rural income disparity,and this effect is strengthened by the increase of highway accessibility.We conclude that improving transportation accessibility is conducive to reducing the urban-rural income disparity but its effect is spatial heterogenetic.Highways and railways should be developed in a coordinated manner to promote an integrated transport network system.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 42075073 and 42075077)。
文摘This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.
文摘BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II,and hypoxia-induced factor(HIF)-1 expressions may be useful biomarkers for detecting primary tumors and lymph node metastasis when combined with fluorodeoxyglucose(FDG)uptake on positron emission tomography/computed tomography(PET/CT).AIM To evaluate GLUT-1,GLUT-3,HK-II,and HIF-1 expressions as biomarkers for detecting primary tumors and lymph node metastasis with 18F-FDG-PET/CT.METHODS This retrospective study included 169 patients with colorectal cancer who underwent colectomy and preoperative 18F-FDG-PET/CT at Chungbuk National University Hospital between January 2009 and May 2012.Two tissue cores from the central and peripheral areas of the tumors were obtained and were examined by a dedicated pathologist,and the expressions of GLUT-1,GLUT-3,HK-II,and HIF-1 were determined using immunohisto-chemical staining.We analyzed the correlations among their expressions,various clinicopathological factors,and the maximum standardized uptake value(SUVmax)of PET/CT.RESULTS GLUT-1 was found at the center or periphery of the tumors in 109(64.5%)of the 169 patients.GLUT-1 positivity was significantly correlated with the SUVmax of the primary tumor and lymph nodes,regardless of the biopsy site(tumor center,P<0.001 and P=0.012;tumor periphery,P=0.030 and P=0.010,respectively).GLUT-1 positivity and negativity were associated with higher and lower sensitivities of PET/CT,respectively,for the detection of lymph node metastasis,regardless of the biopsy site.GLUT3,HK-II,and HIF-1 expressions were not significantly correlated with the SUVmax of the primary tumor and lymph nodes.CONCLUSION GLUT-1 expression was significantly correlated with the SUVmax of 18F-FDG-PET/CT for primary tumors and lymph nodes.Clinicians should consider GLUT-1 expression in preoperative endoscopic biopsy in interpreting PET/CT findings.
文摘Sodium-dependent glucose transporter 2 inhibitors(SGLT2i)have been increa-singly used with proven efficacy in patients with heart failure(HF),regardless of diabetes status.GrubićRotkvićet al recently published an observational study on SGLT2i therapy in patients with type 2 diabetes mellitus and asymptomatic HF.They found that the use of SGLT2i led to reduced cardiac load and improved cardiovascular performance,reinforcing the evolving paradigm that SGLT2i are not merely glucose-lowering agents but are integral to the broader management of cardiovascular risk in patients with type 2 diabetes mellitus.The study by GrubićRotkvićet al contributes to the growing body of literature supporting the early use of SGLT2i in patients with diabetic cardiomyopathy,offering a potential strategy to mitigate the progression of HF.Future larger studies should be con-ducted to confirm these findings,and explore the long-term cardiovascular bene-fits of SGLT2i,particularly in asymptomatic patients at risk of developing HF.
文摘We comment on an article by GrubićRotkvićet al published in the recent issue of the World Journal of Cardiology.We specifically focused on possible factors affecting the therapeutic effectiveness of sodium-dependent glucose transporter inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)and their impact on comorbidities.SGLT2i inhibits SGLT2 in the proximal tubules of the kidneys,lowering blood glucose levels by inhibiting glucose reabsorption by the kidneys and causing excess glucose to be excreted in the urine.Previous studies have demonstrated a role of SGLT2i in cardiovascular function in patients with diabetes who take metformin but still have poor glycemic control.In addition,SGLT2i has been shown to be effective in anti-apoptosis,weight loss,and cardiovascular protection.Accordingly,it is feasible to treat patients with T2DM with cardiovascular or renal diseases using SGLT2i.
文摘This article addresses the substantial findings of a study on sodium-dependent glucose transporter 2 inhibitors(SGLT2is)and their effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure.The editorial explores the broader implications of the study findings for clinical practice,thus highlighting the pivotal role of SGLT2is in improving cardiac function,reducing oxidative stress,and attenuating inflammation.It emphasizes the importance of early intervention with SGLT2is in preventing the progression of diabetic cardio-myopathy;hence,these inhibitors have the potential to transform the manage-ment of asymptomatic heart failure in patients with diabetes.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金funded by Ho Chi Minh City University of Technology(HCMUT),VNU-HCM under Grant Number B2021-20-04.
文摘Optimizing Flow Path Design(FPD)is a popular research area in transportation system design,but its application to Overhead Transportation Systems(OTSs)has been limited.This study focuses on optimizing a double-spine flow path design for OTSs with 10 stations by minimizing the total travel distance for both loaded and empty flows.We employ transportation methods,specifically the North-West Corner and Stepping-Stone methods,to determine empty vehicle travel flows.Additionally,the Tabu Search(TS)algorithm is applied to branch the 10 stations into two main layout branches.The results obtained from our proposed method demonstrate a reduction in the objective function value compared to the initial feasible solution.Furthermore,we explore howchanges in the parameters of the TS algorithm affect the optimal result.We validate the feasibility of our approach by comparing it with relevant literature and conducting additional tests on layouts with 20 and 30 stations.
基金Supported by Romanian Ministry of Research,Innovation and Digitization,No.PN23.16.02.04 and No.31PFE/30.12.2021.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
基金supported by COBRE(P30GM149367)the Puerto Rico Science&Technology Trust(2022-00125)+1 种基金MBRS-RISE Program(R25 GM061838)SC1GM144032 program(all to JDM)。
文摘In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA0719000)。
文摘Helium transport through nanoscale inorganic mineral pores and pore throats is essential for its overall migration.To elucidate helium's transport dynamics within nanopores,we employed equilibrium and non-equilibrium molecular dynamics simulations to investigate helium's static self-diffusion and pressure-driven flow in quartz slit-shaped nanopores.We also introduced water and various gases,including hydrogen,methane,ethane,nitrogen,and carbon dioxide,into the nanopores to assess their influence on helium transport.Our findings indicate minimal helium adsorption on quartz pore surfaces.Under conditions where the pore size is less than 5 nm and the pressure under 10 MPa,environmental factors markedly influence helium diffusion.Large pore sizes,high temperatures,and low gas pressures enhance helium desorption and facilitate faster diffusion.We observed a positive correlation between helium flow velocity and factors such as pore size,pressure gradient,and surface smoothness of the pores.Notably,the presence of pore water and carrier gases in quartz nanopores,which diffuse more slowly than helium,tends to reduce helium surface adsorption and slow its diffusion.Among the carrier gases studied,nitrogen showed similar adsorption capacity,diffusivity,and stability to helium,while carbon dioxide displayed the highest adsorption capacity and the slowest diffusion rate,markedly differing from helium.Based on the simulation results,we concluded that water and carrier gases primarily function as transport mediums in helium migration,moving together with helium.Nitrogen,which shares similar properties with helium,effectively assists in this co-migration process.Conversely,carbon dioxide,due to its high adsorption capacity and slow diffusion,tends to be lost during co-migration.As a result,gas reservoirs with high nitrogen levels and low carbon dioxide levels are more likely to have higher helium concentrations.Additionally,the smaller pore sizes and higher gas pressures in caprocks can impede helium's diffusion,favoring its preservation in reservoirs.Moreover,the presence of water and carrier gases significantly obstructs these pores,further hindering helium's escape.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFD1200500)STI 2030-Major Projects,China(Grant No.2022ZD04017)Sichuan Department of Science and Technology,China(Grant No.2022JDRC0111).
文摘The tolerance of rice to drought and saline stress is crucial for maintaining yields and promoting widespread cultivation.From an ethyl methanesulfonate(EMS)-mutagenized mutant library,we identified a mutant that is susceptible to osmotic stress,named Osmotic Stress Sensitivity 1(Oss1).Using MutMap sequencing,we characterized the role of a choline transporter-related family gene,CTR4(Choline Transporter-Related 4),in rice’s tolerance to drought and salt stress.CTR4 plays a critical role in regulating membrane lipid synthesis.In knockout mutants,the total membrane lipid content,especially unsaturated fatty acids,was significantly reduced.Compared with the wild type,knockout mutants exhibited decreased membrane lipid stability under drought and salt stress,faster water loss,higher relative electrolyte leakage,and lower levels of proline and soluble sugars,leading to impaired tolerance to drought and salt stress.In contrast,the overexpression of CTR4 enhanced seedling tolerance to drought and saline stress.The overexpression lines displayed lower malondialdehyde levels,reduced relative electrolyte leakage,and slower rates of leaf water loss under stress conditions,thereby improving seedling survival rates during stress.Moreover,lipid synthesis gene expression was down-regulated in CTR4 mutants,potentially exacerbating membrane permeability defects and further compromising stress resistance.These findings suggest that CTR4 mediates choline transport and influences cell membrane formation,thereby enhancing rice defenses against drought and salt stress by maintaining lipid homeostasis.
基金The National Key Technology R&D Program of China during the 11 th Five-Year Plan Period(No.2006BAH02A06)Program for New Century Excellent Talents in China(No.NCET-05-0529)
文摘Spatial spillover effects,either positive or negative,of transport infrastructure,highways/expressways,etc.,on regional economic growth are proposed.Using the panel data for 11 cities of Zhejiang province from 1994 to 2003,a spatial production function is applied to examine the spatial spillovers which can be generated as a positive output spillover from the transport infrastructure between neighboring cities.Some spatial weighted matrices are adopted to define different neighboring cities to measure how easily factors or economic activities can migrate between regions.The estimation results show that the output elasticity of the highway infrastructure in 11 cities are all insignificant at a 5% significance level;hence,highway infrastructure in a region cannot explain the same region's economic growth.On the other hand,the highway infrastructure of other contiguous regions has positive spillover effects on a same region's economic growth.