Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention.However,there exist two different definitions on the electrok...Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention.However,there exist two different definitions on the electrokinetic energy conversion efficiency in literature.A few researchers defined the efficiency using the pure pressure-driven flow rate,while other groups defined the efficiency based on the flow rate with the inclusion of the effect of the streaming potential field.In this work,both definitions are investigated for different fluid types under the periodic electrokinetic flow condition.For Newtonian fluids,the two definitions give similar results.However,for viscoelastic fluids,these two definitions lead to significant difference.The efficiency defined by the pure pressure-driven flow rate even exceeds 100%in a certain range of the parameters.The result shows that in the case of viscoelastic flow,it is incorrect to define the energy conversion efficiency by pure pressure-driven flow rate.At the same time,the reason for this problem is clarified through comprehensive analysis.展开更多
In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to i...In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11902165,11772162,and 11862018)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2019BS01004 and 2021MS01007)the Inner Mongolia Grassland Talent(No.12000-12102013)。
文摘Energy conversion in micro/nano-systems is a subject of current research,among which the electrokinetic energy conversion has attracted extensive attention.However,there exist two different definitions on the electrokinetic energy conversion efficiency in literature.A few researchers defined the efficiency using the pure pressure-driven flow rate,while other groups defined the efficiency based on the flow rate with the inclusion of the effect of the streaming potential field.In this work,both definitions are investigated for different fluid types under the periodic electrokinetic flow condition.For Newtonian fluids,the two definitions give similar results.However,for viscoelastic fluids,these two definitions lead to significant difference.The efficiency defined by the pure pressure-driven flow rate even exceeds 100%in a certain range of the parameters.The result shows that in the case of viscoelastic flow,it is incorrect to define the energy conversion efficiency by pure pressure-driven flow rate.At the same time,the reason for this problem is clarified through comprehensive analysis.
文摘In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.