Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load tran...Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load transport rate by adopting the sedimentation pit method and resolving such key problems as weighing and desilting, which can achieve long-time, all-weather and real-time telemeasurement of the bed load transport rate of plain rivers, estuaries and coasts. Both laboratory and field tests show that this monitor is reasonable in design, stable in properties and convenient in measurement, and it can be used to monitor the bed load transport rate in practical projects.展开更多
In the catastrophe theory of nonlinear science, the intensity of water flow Θ and the coefficient of non uniform sediment m are regarded as two bound variables, and the intensity of bed load transport Φ as th...In the catastrophe theory of nonlinear science, the intensity of water flow Θ and the coefficient of non uniform sediment m are regarded as two bound variables, and the intensity of bed load transport Φ as the state variable in the motion of non uniform sediment in cusp catastrophe model. Based on the standard equation of the cusp catastrophe theory, the relation equation between the intensity of bed load transport Φ and the intensity of water flow Θ has been derived by used coordinate transform and topology transform. The equation of bed load transport rate was built on the cusp catastrophe theory of nonlinear science. The others are applied to verify this equation, that the results calculated by the cusp catastrophe equation agree well with the other equations. This indicates that the cusp catastrophe equation is reasonable, and the results fully reflect the characteristics of threshold motion and transport of non uniform sediment. The purpose of this paper is to explore the incipient motion and transport laws of non uniform sediment from the viewpoint of nonlinear science.展开更多
基金supported by the special program to enhance the navigation capacity of the Golden Waterway funded by the Ministry of Transport of the People’s Republic of China"Research on Key Techniques to Monitor and Simulate the River Flow and Sediment Transport"(Grant No.2011-328-746-40)
文摘Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load transport rate by adopting the sedimentation pit method and resolving such key problems as weighing and desilting, which can achieve long-time, all-weather and real-time telemeasurement of the bed load transport rate of plain rivers, estuaries and coasts. Both laboratory and field tests show that this monitor is reasonable in design, stable in properties and convenient in measurement, and it can be used to monitor the bed load transport rate in practical projects.
基金theNinethFiveyearsplanProjectoftheChangjiangGorgesSedimentProblem (No :95 5 4 )andthejointprojectofNationalNaturalScienceFoundationofChinaandtheMinistryofWaterConservancyofChina (No :5 9890 2 0 0 )
文摘In the catastrophe theory of nonlinear science, the intensity of water flow Θ and the coefficient of non uniform sediment m are regarded as two bound variables, and the intensity of bed load transport Φ as the state variable in the motion of non uniform sediment in cusp catastrophe model. Based on the standard equation of the cusp catastrophe theory, the relation equation between the intensity of bed load transport Φ and the intensity of water flow Θ has been derived by used coordinate transform and topology transform. The equation of bed load transport rate was built on the cusp catastrophe theory of nonlinear science. The others are applied to verify this equation, that the results calculated by the cusp catastrophe equation agree well with the other equations. This indicates that the cusp catastrophe equation is reasonable, and the results fully reflect the characteristics of threshold motion and transport of non uniform sediment. The purpose of this paper is to explore the incipient motion and transport laws of non uniform sediment from the viewpoint of nonlinear science.