A complete and harmonized fundamental circuit relational graph with four linear and four memory elements is con- structed based on some newly defined elements, which provides a guide to developing novel circuit functi...A complete and harmonized fundamental circuit relational graph with four linear and four memory elements is con- structed based on some newly defined elements, which provides a guide to developing novel circuit functionalities in the future. In addition to resistors, capacitors, and inductors, which are defined in terms of a linear relationship between charge q, current i, voltage v, and magnetic flux φ, Chua proposed in 1971 a fourth linear circuit element to directly relate φ and q. A nonlinear resistive device defined in memory i-v relation and dubbed memristor, was later attributed to such an element and has been realized in various material structures. Here we clarify that the memristor is not the true fourth fundamen- tal circuit element but the memory extension to the concept of resistor, in analogy to the extension of memcapacitor to capacitor and meminductor to inductor. Instead, a two-terminal device employing the linear ME effects, termed transtor, directly relates φ and q and should be recognized as the fourth linear element. Moreover, its memory extension, termed memtranstor, is proposed and analyzed here.展开更多
Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects,low operating temperature,and small electric polarization induced by magnetic orders.As a result,current s...Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects,low operating temperature,and small electric polarization induced by magnetic orders.As a result,current studies on applications of the magnetoelectric effects are mainly focusing on multiferroic heterostructures and composites.Here we report a room-temperature giant effect in response to external magnetic fields in single-phase multiferroics.A low magnetic field of 1000 Oe applied on the spin-driven multiferroic hexaferrites BaSrCo_(2) Fe_(11)AlO_(22) and Ba_(0.9)Sr_(1.1)Co_(2) Fe_(11)AlO_(22)is able to cause a huge change in the linear magnetoelectric coefficient(α_(E)=dE/dH) by several orders,leading to a giant magnetotranstance(GMT) effect at room temperature.The GMT effect is comparable to the well-known giant magnetoresistance(GMR) effect in magnetic multilayers,and thus opens up a door toward practical applications for single-phase multiferroics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11227405,11374347,11274363,and 11474335)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07030200)
文摘A complete and harmonized fundamental circuit relational graph with four linear and four memory elements is con- structed based on some newly defined elements, which provides a guide to developing novel circuit functionalities in the future. In addition to resistors, capacitors, and inductors, which are defined in terms of a linear relationship between charge q, current i, voltage v, and magnetic flux φ, Chua proposed in 1971 a fourth linear circuit element to directly relate φ and q. A nonlinear resistive device defined in memory i-v relation and dubbed memristor, was later attributed to such an element and has been realized in various material structures. Here we clarify that the memristor is not the true fourth fundamen- tal circuit element but the memory extension to the concept of resistor, in analogy to the extension of memcapacitor to capacitor and meminductor to inductor. Instead, a two-terminal device employing the linear ME effects, termed transtor, directly relates φ and q and should be recognized as the fourth linear element. Moreover, its memory extension, termed memtranstor, is proposed and analyzed here.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51725104, and 11534015)the National Key Research and Development Program of China (Grant No. 2016YFA0300700)the Beijing Natural Science Foundation (Grant No. Z180009)。
文摘Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects,low operating temperature,and small electric polarization induced by magnetic orders.As a result,current studies on applications of the magnetoelectric effects are mainly focusing on multiferroic heterostructures and composites.Here we report a room-temperature giant effect in response to external magnetic fields in single-phase multiferroics.A low magnetic field of 1000 Oe applied on the spin-driven multiferroic hexaferrites BaSrCo_(2) Fe_(11)AlO_(22) and Ba_(0.9)Sr_(1.1)Co_(2) Fe_(11)AlO_(22)is able to cause a huge change in the linear magnetoelectric coefficient(α_(E)=dE/dH) by several orders,leading to a giant magnetotranstance(GMT) effect at room temperature.The GMT effect is comparable to the well-known giant magnetoresistance(GMR) effect in magnetic multilayers,and thus opens up a door toward practical applications for single-phase multiferroics.