The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Prov...The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.展开更多
The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements...The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies.展开更多
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and...By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.展开更多
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relati...Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.展开更多
Based on the four-times-daily ERA-Interim data with the resolution of 0.75°×0.75°,the structure and evolution characteristics of a transverse shear line(TSL)over the Qinghai-Tibet Plateau in April 2017 ...Based on the four-times-daily ERA-Interim data with the resolution of 0.75°×0.75°,the structure and evolution characteristics of a transverse shear line(TSL)over the Qinghai-Tibet Plateau in April 2017 were analyzed,and the influence mechanism of the frontogenesis and frontolysis caused by the upper-level jet on its evolution was also investigated.The results show that the TSL was mainly located near the axis of the positive vorticity zone,which was a low-value area of the wind speed.It was a shallow baroclinic system with weak ascending motion.In the vertical direction,the TSL extended to the lowest height at 00:00 and the highest at 18:00.In the horizontal direction,the length of the TSL in the east-west direction was relatively shorter during 00:00-06:00 and relatively longer during 12:00-18:00.Besides,the position of the TSL was slightly northward at 06:00 and slightly southward at 18:00.The moving direction of the TSL was generally consistent with that of the upper-level jet.In addition,the vertical stretching height of the TSL and the near-surface wind speed were positively correlated with the intensity of the upper-level jet.The calculation by frontogenesis function indicates that the frontogenesis(frontolysis)was conducive to the formation(weakening)and strengthening(dissipation)of the TSL.The horizontal deformation-induced and diabatic heating-induced frontogenesis were favorable for the formation of the TSL,while the middle-level horizontal convergence-induced and diabatic heating-induced frontogenesis were beneficial to its maintenance.Besides,the moving direction and baroclinicity of the TSL over the Qinghai-Tibet Plateau were determined by the horizontal deformation-induced frontogenesis.In the frontogenesis function,the terms of horizontal deformation and horizontal convergence together determined the position of the TSL,and the diabatic heating term was conducive to the upward extension of the TSL.展开更多
There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly eas...There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.展开更多
The structural circumferential periodicity of inertial excitation produced by concentrated mass was utilized to establish the mathematical model of thin circular plate carrying eccentric concentrated mass and to analy...The structural circumferential periodicity of inertial excitation produced by concentrated mass was utilized to establish the mathematical model of thin circular plate carrying eccentric concentrated mass and to analyze its transverse vibration. The fundamental frequency coefficient, natural frequency and mode shape function are determined by this method. A clamped thin circular plate was taken as an example to study the mass effect on the vibrating system.Comparison between the present results and published ones exhibits excellent agreement, which shows that the analytical method in this paper can be used to predict the transverse vibration parameters accurately.展开更多
The modulational instability for longitudinal and transverse gravitoelectromagnetic(GEM)perturbations is investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system.Ana...The modulational instability for longitudinal and transverse gravitoelectromagnetic(GEM)perturbations is investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system.Analytical results indicate that the instability may lead the initially uniformly distributed matter collapse into a small region where the density of matter and the quasi-static self-generated gravitomagnetic field are strongly enhanced.There will be a pancake-like structure because the characteristic scale of longitudinal perturbation is much larger than the transverse one.The anisotropic accumulation of matter and the generation of a gravitomagnetic field are in favor of the formation of a rotationally pancake-like structure.展开更多
The giant magnetoimpedance(GMI)effect and effective permeability ratio in a QFR/Cu/QFR sandwiched structure are studied,where QFR stands for the as-quenched FeNiCrSiB amorphous ribbon.Remarkable GMI effects are obtain...The giant magnetoimpedance(GMI)effect and effective permeability ratio in a QFR/Cu/QFR sandwiched structure are studied,where QFR stands for the as-quenched FeNiCrSiB amorphous ribbon.Remarkable GMI effects are obtained in the QFR/Cu/QFR sandwiched structure without annealing.The maximum values of the longitudinal and transverse GMI ratios at 0.5 MHz are 282%and 408%,respectively.Correspondingly,the maximum effective permeability ratios at 0.5 MHz are 326%and 1013%in longitudinal and transverse field,respectively.These large GMI values are attributed to the high effective permeability of the sample due to the closed alternating current(ac)magnetic flux path in the sandwiched structure,and large permeability variation induced by the magnetic field.展开更多
Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. ...Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. 01° x 0. 01°x lm grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.展开更多
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
基金Under the auspices of National Natural Science Foundation of China (No 40571019)
文摘The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province, which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges. The measurement results show that, on the conditions of approximate wind velocities and same surface materials and environments, some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge. First, the sand transport rates of layers at different heights in the wind-sand flow increase, with the maximum increase at the height layer of 4-8cm. Second, the ratios of sand trans-port rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm), but increase at the high height layer (4-60cm). Third, the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm, but it changes from power function model to ex-ponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate. Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10275042 and 10475054), the Shanxi Provincial Natural Science Foundation (Grant No 20021006), and the Shanxi Provincial 1Foundation for Returned 0verseas Scholars.
文摘The azimuthal distributions of final-state particles and fragments produced in high-energy nucleus-nucleus collisions are described by a modified multisource ideal gas model which contains the expansions and movements of the emission sources. The transverse structures of the sources are given in the transverse plane by momentum components Px and Py, and described by parameters in the model. The results of the azimuthal distributions, calculated by the Monte Carlo method, are in good agreement with the experimental data in nucleus-nucleus collisions at high energies.
文摘By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11272196, 11002085, and 11032007) and the Key Project of Education Commission of Shanghai Municipal, China (Grant No. 11ZZ87).
文摘Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.
基金Supported by Project of Qinghai Science and Technology Department (2020-ZJ-739)Project of Key Laboratory for Disaster Prevention and Mitigation of Qinghai Province (QFZ-2021-Z04)Key Project of Qinghai Provincial Meteorological Bureau (QXZ2020-03)
文摘Based on the four-times-daily ERA-Interim data with the resolution of 0.75°×0.75°,the structure and evolution characteristics of a transverse shear line(TSL)over the Qinghai-Tibet Plateau in April 2017 were analyzed,and the influence mechanism of the frontogenesis and frontolysis caused by the upper-level jet on its evolution was also investigated.The results show that the TSL was mainly located near the axis of the positive vorticity zone,which was a low-value area of the wind speed.It was a shallow baroclinic system with weak ascending motion.In the vertical direction,the TSL extended to the lowest height at 00:00 and the highest at 18:00.In the horizontal direction,the length of the TSL in the east-west direction was relatively shorter during 00:00-06:00 and relatively longer during 12:00-18:00.Besides,the position of the TSL was slightly northward at 06:00 and slightly southward at 18:00.The moving direction of the TSL was generally consistent with that of the upper-level jet.In addition,the vertical stretching height of the TSL and the near-surface wind speed were positively correlated with the intensity of the upper-level jet.The calculation by frontogenesis function indicates that the frontogenesis(frontolysis)was conducive to the formation(weakening)and strengthening(dissipation)of the TSL.The horizontal deformation-induced and diabatic heating-induced frontogenesis were favorable for the formation of the TSL,while the middle-level horizontal convergence-induced and diabatic heating-induced frontogenesis were beneficial to its maintenance.Besides,the moving direction and baroclinicity of the TSL over the Qinghai-Tibet Plateau were determined by the horizontal deformation-induced frontogenesis.In the frontogenesis function,the terms of horizontal deformation and horizontal convergence together determined the position of the TSL,and the diabatic heating term was conducive to the upward extension of the TSL.
文摘There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA1117064)
文摘The structural circumferential periodicity of inertial excitation produced by concentrated mass was utilized to establish the mathematical model of thin circular plate carrying eccentric concentrated mass and to analyze its transverse vibration. The fundamental frequency coefficient, natural frequency and mode shape function are determined by this method. A clamped thin circular plate was taken as an example to study the mass effect on the vibrating system.Comparison between the present results and published ones exhibits excellent agreement, which shows that the analytical method in this paper can be used to predict the transverse vibration parameters accurately.
基金Supported by the National Natural Science Foundation of China under Grant No.10974211the National Basic Research Program of China under Grant No.2011CB921504the Research Project of Shanghai Science and Technology Commission under Grant Nos.09DJ1400700 and 10DJ1400600.
文摘The modulational instability for longitudinal and transverse gravitoelectromagnetic(GEM)perturbations is investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system.Analytical results indicate that the instability may lead the initially uniformly distributed matter collapse into a small region where the density of matter and the quasi-static self-generated gravitomagnetic field are strongly enhanced.There will be a pancake-like structure because the characteristic scale of longitudinal perturbation is much larger than the transverse one.The anisotropic accumulation of matter and the generation of a gravitomagnetic field are in favor of the formation of a rotationally pancake-like structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51001078 and 51202155the Zhejiang Provincial Natural Science Foundation of China under Grant Nos Y4110547 and Y4110207.
文摘The giant magnetoimpedance(GMI)effect and effective permeability ratio in a QFR/Cu/QFR sandwiched structure are studied,where QFR stands for the as-quenched FeNiCrSiB amorphous ribbon.Remarkable GMI effects are obtained in the QFR/Cu/QFR sandwiched structure without annealing.The maximum values of the longitudinal and transverse GMI ratios at 0.5 MHz are 282%and 408%,respectively.Correspondingly,the maximum effective permeability ratios at 0.5 MHz are 326%and 1013%in longitudinal and transverse field,respectively.These large GMI values are attributed to the high effective permeability of the sample due to the closed alternating current(ac)magnetic flux path in the sandwiched structure,and large permeability variation induced by the magnetic field.
基金jointly sponsored by the Special Program of Science and Technology Innovation of Tianjin Municipality ( 07FDZDSF02102 )the Geological Program of Mineral Resources Compensation of Tianjin Municipality,China
文摘Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. 01° x 0. 01°x lm grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.