An exact and complete solution of the problem of a half-planecrack in an infinite transversely isotropic piezoelectric body ispresented. The upper and lower crack faces are assumed to be loadedantisym- metrically by a...An exact and complete solution of the problem of a half-planecrack in an infinite transversely isotropic piezoelectric body ispresented. The upper and lower crack faces are assumed to be loadedantisym- metrically by a couple of tangential point forces inopposite directions. The solution is derived through a lim- itingprocedure from that of a penny-shaped crack. The expressions for theelectroelastic field are given in terms of elementary functions.Finally, the numerical results of the second and third mode stressintensity factors k_2 and k_3 of piezoelectric materials and elasticmaterials are compared in figures.展开更多
基金the National Natural Science Foundation of China(No.19872060 and 69982009)the Postdoctoral Foundation of China
文摘An exact and complete solution of the problem of a half-planecrack in an infinite transversely isotropic piezoelectric body ispresented. The upper and lower crack faces are assumed to be loadedantisym- metrically by a couple of tangential point forces inopposite directions. The solution is derived through a lim- itingprocedure from that of a penny-shaped crack. The expressions for theelectroelastic field are given in terms of elementary functions.Finally, the numerical results of the second and third mode stressintensity factors k_2 and k_3 of piezoelectric materials and elasticmaterials are compared in figures.