Fish traps were investigated to understand the effects of season, bait type, trap size, and trap soak time on catch rates, catch composition, and trap loss rates from March 2004 to September 2005, to improve the perfo...Fish traps were investigated to understand the effects of season, bait type, trap size, and trap soak time on catch rates, catch composition, and trap loss rates from March 2004 to September 2005, to improve the performance and management of Kuwait's gargoor (cage style fish trap) fishery, which used to be the nation's most important one in terms of value and landings volume. Catch rates were the highest in April/May (5 8 kg/trap haul) and again in December (7 kg/trap haul). Bait type and trap size also affected catch rates and species composition. Of the seven baits tested, the best catch rates, 〉5 kg/trap haul, occurred with cuttlefish (Sepia pharaonis), but wolf-herring (Chiroeentrus dorab) and mullet (Liza klunzingeri) also produced good results (4-5 kg/trap haul). Within the five tested sizes, the two largest-sized traps captured more fish and larger size fish. Analysis of variance (ANOVA) showed significant differences of catch rate among traps with different baits as well as among traps of different sizes. Duncan test further revealed these differences between two specific baits and sizes. Cluster Analysis of species composition showed more differences among different baits than among different trap sizes. Longer soak times did not result in larger catch rates, but increased trap loss. About 10-day soak time resulted in trap loss 7%, while 40-day soak time could result in a loss of around 20%. Consequently, it is recommended that the gargoor be checked every 10 or fewer days. The average overall catch rate during the study period was lower than that of 1980s (4.5 vs. 5.8 kg/trap haul), indicating a possible decline offish abundance in Kuwait's waters. It is recommended that the number of gargoor fishing boats and gargoors from each boat should be limited to allow stock rehabilitation.展开更多
Background:Waterbirds are globally declining as a result of habitat loss, alteration or degradation. Fishing activities may affect waterbird distribution, abundance and diversity, and traditional fishing activities of...Background:Waterbirds are globally declining as a result of habitat loss, alteration or degradation. Fishing activities may affect waterbird distribution, abundance and diversity, and traditional fishing activities often enhance waterbird abundance. We tested this hypothesis by studying the abundance and diversity of selected common waterbird species in the Kadalundi–Vallikkunnu Community Reserve, a globally significant wetland in southwestern India in relation to fishing activities.Methods:We monitored waterbird abundance four times a month from 2012 to 2015 using direct observation method during low tide. Traditional bamboo fish traps were deployed during the first and third weeks of each month. ANOVAs(one-way and multi-way) were used to examine how waterbird counts diversity varied in relation to years, seasons and period of fishing traps. Additionally we conducted a linear regression to examine the relationship between fish occurrence and waterbird counts and diversity.Results:Waterbird counts varied with years and seasons, with the maximum counts being recorded during the postmonsoon(winter). Individual species varied in their responses to trap deployment. Small waterbird species usually forage in shallow shorelines, increased during trap deployment whereas the larger waterbirds were not affected by trap deployment because they tend to hunt in deeper waters. The total fish captured was an important predictor of both waterbird abundance and diversity.Conclusion:In this study we documented a positive association between traditional fish trap deployment and waterbird counts and diversity. Providing high quality habitats for waterbirds as well as effective sustainable livelihoods through traditional fisheries is a critical management issue.展开更多
In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reducti...In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.展开更多
基金Supported by the Kuwait Foundation for the Advancement of Science (KFAS)the Public Authority for Agriculture and Fisheries Resources(PAAFR)+1 种基金the Project of Investigation to Improve Kuwait’s Demersal Trap Fishery of Kuwait Institute for Scientific Research (KISR)which was conducted at the Mariculture and Fisheries Department of KISR
文摘Fish traps were investigated to understand the effects of season, bait type, trap size, and trap soak time on catch rates, catch composition, and trap loss rates from March 2004 to September 2005, to improve the performance and management of Kuwait's gargoor (cage style fish trap) fishery, which used to be the nation's most important one in terms of value and landings volume. Catch rates were the highest in April/May (5 8 kg/trap haul) and again in December (7 kg/trap haul). Bait type and trap size also affected catch rates and species composition. Of the seven baits tested, the best catch rates, 〉5 kg/trap haul, occurred with cuttlefish (Sepia pharaonis), but wolf-herring (Chiroeentrus dorab) and mullet (Liza klunzingeri) also produced good results (4-5 kg/trap haul). Within the five tested sizes, the two largest-sized traps captured more fish and larger size fish. Analysis of variance (ANOVA) showed significant differences of catch rate among traps with different baits as well as among traps of different sizes. Duncan test further revealed these differences between two specific baits and sizes. Cluster Analysis of species composition showed more differences among different baits than among different trap sizes. Longer soak times did not result in larger catch rates, but increased trap loss. About 10-day soak time resulted in trap loss 7%, while 40-day soak time could result in a loss of around 20%. Consequently, it is recommended that the gargoor be checked every 10 or fewer days. The average overall catch rate during the study period was lower than that of 1980s (4.5 vs. 5.8 kg/trap haul), indicating a possible decline offish abundance in Kuwait's waters. It is recommended that the number of gargoor fishing boats and gargoors from each boat should be limited to allow stock rehabilitation.
文摘Background:Waterbirds are globally declining as a result of habitat loss, alteration or degradation. Fishing activities may affect waterbird distribution, abundance and diversity, and traditional fishing activities often enhance waterbird abundance. We tested this hypothesis by studying the abundance and diversity of selected common waterbird species in the Kadalundi–Vallikkunnu Community Reserve, a globally significant wetland in southwestern India in relation to fishing activities.Methods:We monitored waterbird abundance four times a month from 2012 to 2015 using direct observation method during low tide. Traditional bamboo fish traps were deployed during the first and third weeks of each month. ANOVAs(one-way and multi-way) were used to examine how waterbird counts diversity varied in relation to years, seasons and period of fishing traps. Additionally we conducted a linear regression to examine the relationship between fish occurrence and waterbird counts and diversity.Results:Waterbird counts varied with years and seasons, with the maximum counts being recorded during the postmonsoon(winter). Individual species varied in their responses to trap deployment. Small waterbird species usually forage in shallow shorelines, increased during trap deployment whereas the larger waterbirds were not affected by trap deployment because they tend to hunt in deeper waters. The total fish captured was an important predictor of both waterbird abundance and diversity.Conclusion:In this study we documented a positive association between traditional fish trap deployment and waterbird counts and diversity. Providing high quality habitats for waterbirds as well as effective sustainable livelihoods through traditional fisheries is a critical management issue.
基金supported by the National Natural Science Foundation of China(Grant Nos.51305282,51505183&51325501)Program for Excellent Talents of Liaoning Provincial Committee of Education(Grant No.LJQ2014071)
文摘In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.