The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityh...Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices.展开更多
Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites sta...Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.展开更多
Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency a...Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.展开更多
Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene base...Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.展开更多
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ...Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.展开更多
In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photo...In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.展开更多
The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we sum...The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we summarized and discussed the research progress on MOF-based photodetectors.The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details.Additionally,the photodetectors applications for X-ray,ultraviolet and infrared light,biological detectors,and circularly polarized light photodetectors are discussed.Furthermore,summaries and challenges are provided for this important research field.展开更多
Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spec...Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2).展开更多
Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and...Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and multiplication(SACM)APDs are popular due to their straightforward fabrication process, low optical propagation loss, and high detection sensitivity in optical communications. This paper introduces a lateral SACM Ge-on-Si APD on a silicon-on-insulator(SOI) wafer, featuring a 10 μm-long, 0.5 μm-wide Ge layer at 1310 nm on a standard 8-inch silicon photonics platform. The dark current measures approximately 38.6 μA at-21 V, indicating a breakdown voltage greater than-21 V for the device. The APDs exhibit a unitgain responsivity of 0.5 A/W at-10 V. At-15 V, their responsivity reaches 2.98 and 2.91 A/W with input powers of-10 and-25 dBm, respectively. The device's 3-dB bandwidth is 15 GHz with an input power of-15 dBm and a gain is 11.68. Experimental results show a peak in impedance at high bias voltages, attributed to inductor and capacitor(LC) circuit resonance, enhancing frequency response. Furthermore, 20 Gbps eye diagrams at-21 V and-9 dBm input power reveal signal to noise ratio(SNRs) of 5.30. This lateral SACM APD, compatible with the stand complementary metal oxide semiconductor(CMOS) process,shows that utilizing the peaking effect at low optical power increases bandwidth.展开更多
The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(...The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization.展开更多
Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quas...Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.展开更多
Nonfullerene organic solar cells(OSCs) and photodetectors have received tremendous interest due to their rapidly progressed power conversion efficiency(PCE) and wide range photoresponse to nearinfrared region, respect...Nonfullerene organic solar cells(OSCs) and photodetectors have received tremendous interest due to their rapidly progressed power conversion efficiency(PCE) and wide range photoresponse to nearinfrared region, respectively. Further optimization of the interfacial transport layer is one of the key factors toward enhanced performance. Herein, we reported a general multi-component electron transport layer(ETL) strategy to achieve better energy level alignments and interfacial contact for both OSCs and photodetectors. The binary polymer:molecule blend based ETL can overcome low crystallinity and selfaggregation issue in neat polymer and molecule ETL, respectively. The mixed blend provides a more tunable platform to optimize the interfacial morphology and creates more efficient charge-transporting pathways. We showcase that the PNDIT-F3N:PDINN binary ETL exhibits its strength in a series of nonfullerene OSCs with enhanced fill factor and current density, achieving a champion PCE approaching 19%. Additionally, self-powered organic photodetectors with lower dark current and high detectivity were achieved with the same binary ETL strategy. Detailed morphology and device characterizations reveal that the binary ETL modulates the interfacial interface to deliver a more favorable energy level alignment, facilitating carrier extraction and transport. We believe these findings could provide insight into the design of ETL with sufficient interfacial tunability for organic optoelectronic devices.展开更多
Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method f...Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.展开更多
In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-...In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors.展开更多
An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horiz...An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horizontal tube furnace on a 40 nm TiO_(2)thin film deposited on a p-type Si(100)substrate.The CuO–TiO_(2)/TiO_(2)/p-Si(100)devices exhibited excellent rectification characteristics under dark and individual photoillumination conditions.The devices showed remarkable photo-response under broadband(300–1100 nm)light illumination at zero bias voltage,indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations.The maximum response of the devices is observed at 300 nm for an illumination power of 10 W.The response and recovery times were calculated as 86 ms and 78 ms,respectively.Moreover,under a small bias,the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions.The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices.Under illumination conditions,the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO_(2)/TiO_(2)interface.These characteristics make the CuO–TiO_(2)/TiO_(2)broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,th...Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.展开更多
We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit process...We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit processing technology. A test structure of the photodetector with a mesa size of 300μm × 300μm is also made in order to obtain the device parameters. The measured dark current density at 77K is 1.5 × 10^-3A/cm^2 with a bias voltage of 2V. The peak of the responsivity spectrum is at 8.4μm,with a cutoff wavelength of 9μm. The blackbody detectivity is shown to be 3.95 × 10^8 (cm · Hz^1/2)/W. The final FPA is flip-chip bonded on a CMOS read-out integrated circuit. The infrared thermal images of some targets at room temperature background are successfully demonstrated at 80K operating temperature with a ratio of dead pixels of less than 1%.展开更多
A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO 2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of ...A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO 2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of 350℃ without any special treatment on bonding surfaces.The reflectivities of the mirrors can be as high as 99 9%.A Si-based narrow band response InGaAs photodetector is successfully fabricated,with a quantum efficiency of 22 6% at the peak wavelength of 1 54μm,and a full width at half maximum of about 27nm.This method has a great potential for industry processes.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
基金supported by the National Natural Science Foundation of China(52303257,52321006,T2394480,and T2394484)the National Key R&D Program of China(Grant No.2023YFE0111500)+3 种基金Key Research&Development and Promotion of Special Project(Scientific Problem Tackling)of Henan Province(242102211090)the China Postdoctoral Science Foundation(2023TQ0300,and 2023M743171)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(GZB20230666)College Student Innovation and Entrepreneurship Training Program of Zhengzhou University(202410459200)。
文摘Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices.
基金supported by the grants from the National Key Research and Development Program of China 2023YFC2505900support from State Key Laboratory of Photovoltaic Science and Technology 202401030303.
文摘Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974379)the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400)Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio (Grant No.2022-13)。
文摘Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.
基金supported by National Natural Science Foundation of China(51672308,51972025,61888102,and 62004187).
文摘Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62074148,61875194,11727902,12204474,12304111,and 12304112)the Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant No.2020225)+1 种基金Jilin Province Science Fund (Grant Nos.20220101053JC and 20210101145JC)Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project (Grant No.20220508153RC)。
文摘Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.
基金National Natural Science Foundation of China(62074056)Fundamental Research Funds for the Central Universities。
文摘In recent years,copper iodide(CuI)is an emerging p-type wide bandgap semiconductor with high intrinsic Hall mobility,high optical absorption and large exciton binding energy.However,the spectral response and the photoelectric conversion efficiency are limited for CuI-based heterostructure devices,which is related to the difficulty in fabrication of high-quality CuI thin films on other semiconductors.In this study,a p-CuI/n-Si photodiode has been fabricated through a facile solid-phase iodination method.Although the CuI thin film is polycrystalline with obvious structural defects,the CuI/Si diode shows a high weak-light sensitivity and a high rectification ratio of 7.6×10^(4),indicating a good defect tolerance.This is because of the unilateral heterojunction behavior of the formation of the p^(+)n diode.In this work,the mechanism of photocurrent of the p^(+)n diode has been studied comprehensively.Different monochromatic lasers with wavelengths of 400,505,635 and 780 nm have been selected for testing the photoresponse.Under zero-bias voltage,the device is a unilateral heterojunction,and only visible light can be absorbed at the Si side.On the other hand,when a bias voltage of-3 V is applied,the photodiode is switched to a broader“UV-visible”band response mode.Therefore,the detection wavelength range can be switched between the“Visible”and“UV-visible”bands by adjusting the bias voltage.Moreover,the obtained CuI/Si diode was very sensitive to weak light illumination.A very high detectivity of 10^(13)-1014 Jones can be achieved with a power density as low as 0.5μW/cm^(2),which is significantly higher than that of other Cu-based diodes.These findings underscore the high application potential of CuI when integrated with the traditional Si industry.
基金support from the National Natural Science Foundation of China(U23A2095)the National Key R&D Program of China(2022YFA1503300)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2022081)Natural Science Foundation of Fujian Province(2022J06031)the STS Project of Fujian-CAS(2023T3003,2023T3052)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(Grant No.2021ZR131).
文摘The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we summarized and discussed the research progress on MOF-based photodetectors.The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details.Additionally,the photodetectors applications for X-ray,ultraviolet and infrared light,biological detectors,and circularly polarized light photodetectors are discussed.Furthermore,summaries and challenges are provided for this important research field.
基金Funded by the National Natural Science Foundation of China(Nos.51872214 and 52172124)the Fundamental Research Funds for the Central Universities(WUT:2021Ⅲ019JC and 2018Ⅲ041GX)。
文摘Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2).
文摘Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and multiplication(SACM)APDs are popular due to their straightforward fabrication process, low optical propagation loss, and high detection sensitivity in optical communications. This paper introduces a lateral SACM Ge-on-Si APD on a silicon-on-insulator(SOI) wafer, featuring a 10 μm-long, 0.5 μm-wide Ge layer at 1310 nm on a standard 8-inch silicon photonics platform. The dark current measures approximately 38.6 μA at-21 V, indicating a breakdown voltage greater than-21 V for the device. The APDs exhibit a unitgain responsivity of 0.5 A/W at-10 V. At-15 V, their responsivity reaches 2.98 and 2.91 A/W with input powers of-10 and-25 dBm, respectively. The device's 3-dB bandwidth is 15 GHz with an input power of-15 dBm and a gain is 11.68. Experimental results show a peak in impedance at high bias voltages, attributed to inductor and capacitor(LC) circuit resonance, enhancing frequency response. Furthermore, 20 Gbps eye diagrams at-21 V and-9 dBm input power reveal signal to noise ratio(SNRs) of 5.30. This lateral SACM APD, compatible with the stand complementary metal oxide semiconductor(CMOS) process,shows that utilizing the peaking effect at low optical power increases bandwidth.
基金supported by the Jilin Scientific and Technological Development Program(Grant No.20230101286JC)National Natural Science Foundation of China(Grant Nos.61975051,6227503,and 52002110)Hebei Provincial Department of Education Innovation Ability Training Funding Project for graduate students.
文摘The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201)the National Natural Science Foundation of China (Grant No. 12274414)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Contract No. JZHKYPT-2021-08)。
文摘Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
基金financially supported by the National Key Research and Development Program of China (No.2023YFE0210000)the National Natural Science Foundation of China (No. 52261145696, and 52073198)+2 种基金the ‘‘111” projectthe Young Elite Scientist Sponsorship Program by CASTthe Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University。
文摘Nonfullerene organic solar cells(OSCs) and photodetectors have received tremendous interest due to their rapidly progressed power conversion efficiency(PCE) and wide range photoresponse to nearinfrared region, respectively. Further optimization of the interfacial transport layer is one of the key factors toward enhanced performance. Herein, we reported a general multi-component electron transport layer(ETL) strategy to achieve better energy level alignments and interfacial contact for both OSCs and photodetectors. The binary polymer:molecule blend based ETL can overcome low crystallinity and selfaggregation issue in neat polymer and molecule ETL, respectively. The mixed blend provides a more tunable platform to optimize the interfacial morphology and creates more efficient charge-transporting pathways. We showcase that the PNDIT-F3N:PDINN binary ETL exhibits its strength in a series of nonfullerene OSCs with enhanced fill factor and current density, achieving a champion PCE approaching 19%. Additionally, self-powered organic photodetectors with lower dark current and high detectivity were achieved with the same binary ETL strategy. Detailed morphology and device characterizations reveal that the binary ETL modulates the interfacial interface to deliver a more favorable energy level alignment, facilitating carrier extraction and transport. We believe these findings could provide insight into the design of ETL with sufficient interfacial tunability for organic optoelectronic devices.
基金the National Nat-ural Science Foundation of China(Grant Nos.12025503,U23B2072,12074293,and 12275198)the Funda-mental Research Funds for the Center Universities(Grant Nos.2042024kf0001 and 2042023kf0196).
文摘Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2020YFB2206103)。
文摘In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors.
基金CSIR-09/0973(11599)/2021-EMR-I and SERB(Project no:CRG/2021/000255),Department of Science and Technology,Govt.of India。
文摘An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horizontal tube furnace on a 40 nm TiO_(2)thin film deposited on a p-type Si(100)substrate.The CuO–TiO_(2)/TiO_(2)/p-Si(100)devices exhibited excellent rectification characteristics under dark and individual photoillumination conditions.The devices showed remarkable photo-response under broadband(300–1100 nm)light illumination at zero bias voltage,indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations.The maximum response of the devices is observed at 300 nm for an illumination power of 10 W.The response and recovery times were calculated as 86 ms and 78 ms,respectively.Moreover,under a small bias,the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions.The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices.Under illumination conditions,the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO_(2)/TiO_(2)interface.These characteristics make the CuO–TiO_(2)/TiO_(2)broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金supported by the following research fundings including:the National Natural Science Foundation of China(Nos.62005114,62204078 and U22A2072)Natural Science Foundation of Henan-Excellent Youth Scholar(No.232300421092)Open Fund of the State Key Laboratory of Integrated Optoelectronics+(IOSKL2020KF01).
文摘Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.
文摘We design and fabricate a 128 × 128 AlGaAs/GaAs quantum well infrared photodetector focal plane array (FPA). The device is achieved by metal organic chemical vapor deposition and GaAs integrated circuit processing technology. A test structure of the photodetector with a mesa size of 300μm × 300μm is also made in order to obtain the device parameters. The measured dark current density at 77K is 1.5 × 10^-3A/cm^2 with a bias voltage of 2V. The peak of the responsivity spectrum is at 8.4μm,with a cutoff wavelength of 9μm. The blackbody detectivity is shown to be 3.95 × 10^8 (cm · Hz^1/2)/W. The final FPA is flip-chip bonded on a CMOS read-out integrated circuit. The infrared thermal images of some targets at room temperature background are successfully demonstrated at 80K operating temperature with a ratio of dead pixels of less than 1%.
文摘A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO 2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of 350℃ without any special treatment on bonding surfaces.The reflectivities of the mirrors can be as high as 99 9%.A Si-based narrow band response InGaAs photodetector is successfully fabricated,with a quantum efficiency of 22 6% at the peak wavelength of 1 54μm,and a full width at half maximum of about 27nm.This method has a great potential for industry processes.