The increasing demana for advanced modelling methods, which can reflect complex travel activities of individuals, requires enhanced travel data collection methods. The introduction of GPS-assisted data collection meth...The increasing demana for advanced modelling methods, which can reflect complex travel activities of individuals, requires enhanced travel data collection methods. The introduction of GPS-assisted data collection methods has provided an alternative to the conventional methods of travel data collection. GPS-assisted data collection methods improve the accu- racy of data collection and enable capturing more details of individuals' travel behaviour. Recent technological advancements in smartphone-based positioning technologies and communication facilities have opened up new opportunities to apply smartphones as the media of GPS-assisted data collection. Although, different GPS-assisted methods have been employed recently, their performance has not been widely evaluated in real-world experi- ments compared to traditional data collection methods. Accordingly, this paper evaluates the performance of three GPS-assisted methods, namely handheld GPS tracking, smart- phone-based GPS tracking and smartphone-based prompted-recall data collection methods, in conjunction with the web-based data collection to shed light on different aspects of GPS- assisted data collection methods. These methods are compared in terms of the quality and accuracy of the collected data, the demographic attributes of participants and the specifi- cations of labelled trips. The results show that an appropriate employment of smartphones enhances the accuracy of data collection. It is also found that putting an extra burden on participants during a travel data collection survey results in lower trip-rates and poor data quality. Finally, it is found that the application of smartphone-assisted data collection methods help reporting non-motorised trips more accurately.展开更多
Smart mobile applications are software applications that are designed to run on smart phones, tablets, and other mobile electronic devices. In this era of rapid technological advances, these applications have become o...Smart mobile applications are software applications that are designed to run on smart phones, tablets, and other mobile electronic devices. In this era of rapid technological advances, these applications have become one of the primary tools we use daily both in our personal and professional lives. The applications play key roles in facilitating many applications that are pivotal in our today's society including communication, education, business, entertainment, medical, finance, travel, utilities, social, and transportation. This paper reviewed the opportunities and challenges of the applications related to transportation. The opportunities revealed include route planning, ridesharing/carpooling, traffic safety, parking information, transportation data collection, fuel emissions and consumption, and travel information. The potential users of these applications in the field of transportation include (I) transportation agencies for travel data collection, travel information, ridesharing/carpooling, and traffic safety, (2) engineering students for field data collection such as travel speed, travel time, and vehicle count, and (3) general traveling public for route planning, ridesharing/carpooling, parking, traffic safety, and travel information. Significant usage of smart mobile applications can be potentially very beneficial, particularly in automobile travel mode to reduce travel time, cost, and vehicle emissions. In the end this would make travel safer and living environments greener and healthier. However, road users' interactions with these applications could manually, visually, and cognitively divert their attention from the primary task of driving or walking. Distracted road users expose themselves and others to unsafe behavior than undistracted. Road safety education and awareness programs are vital to discourage the use of applications that stimulate unsafe driving/walking behaviors. Educating the traveling public about the dangers of unsafe driving/walking behavior could have significant safety benefits to all road users. Future research needs to compare accuracies of the applications and provide guidelines for selecting them for certain transportation related applications.展开更多
基金partially supported by grant DE130100205 from the Australian Research Council
文摘The increasing demana for advanced modelling methods, which can reflect complex travel activities of individuals, requires enhanced travel data collection methods. The introduction of GPS-assisted data collection methods has provided an alternative to the conventional methods of travel data collection. GPS-assisted data collection methods improve the accu- racy of data collection and enable capturing more details of individuals' travel behaviour. Recent technological advancements in smartphone-based positioning technologies and communication facilities have opened up new opportunities to apply smartphones as the media of GPS-assisted data collection. Although, different GPS-assisted methods have been employed recently, their performance has not been widely evaluated in real-world experi- ments compared to traditional data collection methods. Accordingly, this paper evaluates the performance of three GPS-assisted methods, namely handheld GPS tracking, smart- phone-based GPS tracking and smartphone-based prompted-recall data collection methods, in conjunction with the web-based data collection to shed light on different aspects of GPS- assisted data collection methods. These methods are compared in terms of the quality and accuracy of the collected data, the demographic attributes of participants and the specifi- cations of labelled trips. The results show that an appropriate employment of smartphones enhances the accuracy of data collection. It is also found that putting an extra burden on participants during a travel data collection survey results in lower trip-rates and poor data quality. Finally, it is found that the application of smartphone-assisted data collection methods help reporting non-motorised trips more accurately.
文摘Smart mobile applications are software applications that are designed to run on smart phones, tablets, and other mobile electronic devices. In this era of rapid technological advances, these applications have become one of the primary tools we use daily both in our personal and professional lives. The applications play key roles in facilitating many applications that are pivotal in our today's society including communication, education, business, entertainment, medical, finance, travel, utilities, social, and transportation. This paper reviewed the opportunities and challenges of the applications related to transportation. The opportunities revealed include route planning, ridesharing/carpooling, traffic safety, parking information, transportation data collection, fuel emissions and consumption, and travel information. The potential users of these applications in the field of transportation include (I) transportation agencies for travel data collection, travel information, ridesharing/carpooling, and traffic safety, (2) engineering students for field data collection such as travel speed, travel time, and vehicle count, and (3) general traveling public for route planning, ridesharing/carpooling, parking, traffic safety, and travel information. Significant usage of smart mobile applications can be potentially very beneficial, particularly in automobile travel mode to reduce travel time, cost, and vehicle emissions. In the end this would make travel safer and living environments greener and healthier. However, road users' interactions with these applications could manually, visually, and cognitively divert their attention from the primary task of driving or walking. Distracted road users expose themselves and others to unsafe behavior than undistracted. Road safety education and awareness programs are vital to discourage the use of applications that stimulate unsafe driving/walking behaviors. Educating the traveling public about the dangers of unsafe driving/walking behavior could have significant safety benefits to all road users. Future research needs to compare accuracies of the applications and provide guidelines for selecting them for certain transportation related applications.