On studying traveling waves on a nonlinearly suspended bridge,the following partial differential equation has been considered:\$\$u\-\{tt\}+u\-\{xxxx\}+f(u)=0,\$\$where f(u)=u\++-1 .Here the bridge is seen as a vib...On studying traveling waves on a nonlinearly suspended bridge,the following partial differential equation has been considered:\$\$u\-\{tt\}+u\-\{xxxx\}+f(u)=0,\$\$where f(u)=u\++-1 .Here the bridge is seen as a vibrating beam supported by cables,which are treated as a spring with a one\|sided restoring force.The existence of a traveling wave solution to the above piece\|wise linear equation has been proved by solving the equation explicitly (McKenna & Walter in 1990).Recently the result has been extended to a group of equations with more general nonlinearities such as f(u)=u\++-1+g(u) (Chen & McKenna,1997).However,the restrictions on g(u) do not allow the resulting restoring force function to increase faster than the linear function u-1 for u >1.Since an interesting “multiton” behavior,that is ,two traveling waves appear to emerge intact after interacting nonlinearly with each other,has been observed in numerical experiments for a fast\|increasing nonlinearity f(u)=e u-1 -1 ,it hints that the conclusion of the existence of a traveling wave solution with fast\|increasing nonlinearities shall be valid as well.\;In this paper,the restoring force function of the form f(u)=u·h(u)-1 is considered.It is shown that a traveling wave solution exists when h(u)≥1 for u≥1 (with other assumptions which will be detailed in the paper),and hence allows f to grow faster than u-1 .It is shown that a solution can be obtained as a saddle point in a variational formulation.It is also easy to construct such fast\|increasing f(u) 's for more numerical tests.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regula...In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regularity of travelling wave front solutions depend on the parameters m,n and the wave speed c.展开更多
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa...By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.展开更多
Travelling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and...Travelling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and uniqueness of monotone increasing(decreasing) Travelling wave solutions are established. Some faults in previous studies are corrected.展开更多
In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by re...In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.展开更多
For the Davey-Stewartson system, the exact dark solitary wave solutions, solitary wave solutions, kink wave solution and periodic wave solutions are studied. To guarantee the existence of the above solutions, all para...For the Davey-Stewartson system, the exact dark solitary wave solutions, solitary wave solutions, kink wave solution and periodic wave solutions are studied. To guarantee the existence of the above solutions, all parameter conditions are determined. The persistence of dark solitary wave solutions to the perturbed Davey-Stewartson system is proved.展开更多
基金Project supported by National Natural Science Foundation of China! (19701029) by Outstanding Young Teacher Foundation of Chi
文摘On studying traveling waves on a nonlinearly suspended bridge,the following partial differential equation has been considered:\$\$u\-\{tt\}+u\-\{xxxx\}+f(u)=0,\$\$where f(u)=u\++-1 .Here the bridge is seen as a vibrating beam supported by cables,which are treated as a spring with a one\|sided restoring force.The existence of a traveling wave solution to the above piece\|wise linear equation has been proved by solving the equation explicitly (McKenna & Walter in 1990).Recently the result has been extended to a group of equations with more general nonlinearities such as f(u)=u\++-1+g(u) (Chen & McKenna,1997).However,the restrictions on g(u) do not allow the resulting restoring force function to increase faster than the linear function u-1 for u >1.Since an interesting “multiton” behavior,that is ,two traveling waves appear to emerge intact after interacting nonlinearly with each other,has been observed in numerical experiments for a fast\|increasing nonlinearity f(u)=e u-1 -1 ,it hints that the conclusion of the existence of a traveling wave solution with fast\|increasing nonlinearities shall be valid as well.\;In this paper,the restoring force function of the form f(u)=u·h(u)-1 is considered.It is shown that a traveling wave solution exists when h(u)≥1 for u≥1 (with other assumptions which will be detailed in the paper),and hence allows f to grow faster than u-1 .It is shown that a solution can be obtained as a saddle point in a variational formulation.It is also easy to construct such fast\|increasing f(u) 's for more numerical tests.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
基金This project is supported by the Notional Natural Science Foundation of China
文摘In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regularity of travelling wave front solutions depend on the parameters m,n and the wave speed c.
文摘By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.
基金supported in part by the Natural Sciences and Engineering Research Council of Canada
文摘Travelling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and uniqueness of monotone increasing(decreasing) Travelling wave solutions are established. Some faults in previous studies are corrected.
基金Supported by National Natural Science Foundation of China under Grant No.11471174NSF of Ningbo under Grant No.2014A610018
文摘In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.
基金supported by the National Natural Science Foundation of China(10831003)
文摘For the Davey-Stewartson system, the exact dark solitary wave solutions, solitary wave solutions, kink wave solution and periodic wave solutions are studied. To guarantee the existence of the above solutions, all parameter conditions are determined. The persistence of dark solitary wave solutions to the perturbed Davey-Stewartson system is proved.