Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr...Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.展开更多
By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis...By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.展开更多
文章《Existence and Multiplicity of Traveling Waves in a lattice Dynamical System》利用单调迭代格式和上下解方法研究了一个格动力系统小于临界波速的行波解的存在性,而当波速等于临界波速时不易通过构造上下解来证明其行波解的...文章《Existence and Multiplicity of Traveling Waves in a lattice Dynamical System》利用单调迭代格式和上下解方法研究了一个格动力系统小于临界波速的行波解的存在性,而当波速等于临界波速时不易通过构造上下解来证明其行波解的存在性,该文利用极限方法证明了原格动力系统的具有临界波速的行波解。展开更多
With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult...With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult todescribe anisotropic media containing fluid, such as fractures containing gas, shales containing water Based onBlot theory about two-phase anisotropy, with the use of elastic plane wave equations, we get Christoffel equations.We calculate and analyze the effects of frequency on phase velocity, attenuation, amplitude ratio and polarizationdirection of elastic waves of two-phase, transversely isotropic media. Results show that frequency affects slow Pwave the greatest among the four kinds of waves, i.e., fast P wave, slow P wave, fast S wave and slow S wave.Fluid phase amplitude to solid phase amplitude ratio of fast P wave, fast S wave and slow S wave approaches unitfor large dissipation coefficients. Polarization analysis shows that polarization direction of fluid phase displacement is different from, not parallel to or reverse to, that of solid phase displacement in two-phase anisotropic media.展开更多
Elastic wave propagation and attenuation in porous rock layers with oriented sets of fractures, especially in carbonate reservoirs, are anisotropic owing to fracture sealing, fracture size, fracture density, filling f...Elastic wave propagation and attenuation in porous rock layers with oriented sets of fractures, especially in carbonate reservoirs, are anisotropic owing to fracture sealing, fracture size, fracture density, filling fluid, and fracture strike orientation. To address this problem, we adopt the Chapman effective medium model and carry out numerical experiments to assess the variation in P-wave velocity and attenuation, and the shear-wave splitting anisotropy with the frequency and azimuth of the incident wave. The results suggest that velocity, attenuation, and anisotropy vary as function of azimuth and frequency. The azimuths of the minimum attenuation and maximum P-wave velocity are nearly coincident with the average strike of the two sets of open fractures. P-wave velocity is greater in sealed fractures than open fractures, whereas the attenuation of energy and anisotropy is stronger in open fractures than sealed fractures. For fractures of different sizes, the maximum velocity together with the minimum attenuation correspond to the average orientation of the fracture sets. Small fractures affect the wave propagation less. Azimuth-dependent anisotropy is low and varies more than the other attributes. Fracture density strongly affects the P-wave velocity, attenuation, and shear-wave anisotropy. The attenuation is more sensitive to the variation of fracture size than that of velocity and anisotropy. In the seismic frequency band, the effect of oil and gas saturation on attenuation is very different from that for brine saturation and varies weakly over azimuth. It is demonstrated that for two sets of fractures with the same density, the fast shear-wave polarization angle is almost linearly related with the orientation of one of the fracture sets.展开更多
We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of ...We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of the rolls perpendic- ular to their axes. For a negative enough separation ratio, two types of quite different confined states were documented by applying different control processes. One branch of localized travelling waves survives only in a very narrow band within subcritical regime, while another branch straddles the onset of convection existing both in subcritical and super- critical regions. We elucidated that concentration field and its current are key to understand how confined convection is sustained when conductive state is absolutely unstable, The weak structures in the conducting region are demonstrated too.展开更多
A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are per...A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.展开更多
The propagation of circularly crested thermoelastic diffusive waves in an infinite homogeneous transversely isotropic plate subjected to stress free, isothermal/insulated and chemical potential conditions is investiga...The propagation of circularly crested thermoelastic diffusive waves in an infinite homogeneous transversely isotropic plate subjected to stress free, isothermal/insulated and chemical potential conditions is investigated in the framework of different thermo- elastic diffusion theories. The dispersion equations of thermoelastic diffusive Lamb type waves are derived. Some special cases of the dispersion equations are also deduced.展开更多
The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical...The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical potential boundary conditions in the context of the generalized thermoelastic diffusion theory. The Green-Lindsay(GL) theory is used in the study. In this theory, thermodiffusion and thermodiffusion mechanical relaxations are governed by four different time constants. Secular equations for surface wave propagation in the considered media are derived. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient are graphically presented in order to present the analytical results and make comparison. Some special cases of frequency equations are derived from the present investigation.展开更多
The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The fre...The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.展开更多
This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permea...This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid. The anisotropy considered is of general type, and the attenuating waves in the medium are treated as the inhomogeneous waves. The complex slowness vector is resolved to define the phase velocity, homogeneous attenuation, inhomogeneous attenuation, and angle of attenuation for each of the four attenuating waves in the medium. A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version. An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction, inhomogeneity parameter, frequency regime, anisotropy symmetry, anelasticity of the frame, and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.展开更多
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar t...The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot is known about the local stability of travelling fronts in parabolic systems, for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type. However, for the combustion or monostable type of V, the problem is much more complicated. In this paper, a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established. And then, the result is extended to the damped wave equation with a case of monostable pushed front.展开更多
An aim of current study is to analyze the contribution of reflected longitudinal waves to wave-induced fluid flow(WIFF) in the cracked porous solid.Initially,we investigate the time harmonic plane waves in cracked por...An aim of current study is to analyze the contribution of reflected longitudinal waves to wave-induced fluid flow(WIFF) in the cracked porous solid.Initially,we investigate the time harmonic plane waves in cracked porous solid by employing the mathematical model proposed by Zhang et al.(2019).The solution is obtained in form of the Christoffel equations.The solution of the Christoffel equations indicates that there exist four(three dilatational and one shear) waves.These waves are attenuated in nature due to their complex and frequency-dependent velocities.The reflection coefficients are calculated at the sealed pore stress-free surface of cracked porous solid for the incidence of P1 and SV waves.It is found that three longitudinal waves contribute to WIFF and the contribution of these waves to the induced fluid in the cracked porous solid is analyzed using the reflection coefficients of these longitudinal waves.We analytically show that the fluid flow induced by these longitudinal waves is linked directly to their respective reflection coefficients.Finally,a specific numerical example is considered to discuss and to depict the impact of various parameters on the characteristics of propagation like phase velocity/attenuation,reflection coefficients and WIFF of longitudinal waves.展开更多
The current study presents a new protocol for local pulse wave velocity (PWV) measurement using dynamic MR sequences, which have a high temporal resolution (TR < 6 ms). MR images were obtained at two positions alon...The current study presents a new protocol for local pulse wave velocity (PWV) measurement using dynamic MR sequences, which have a high temporal resolution (TR < 6 ms). MR images were obtained at two positions along the common carotid artery, separated by a distance of 5 cm. In each phase of a MR series, carotid region was automatically extracted and then its area distension waveform could be obtained. Sixteen volunteers with no symptoms of cardiovascular diseases were studied. For local PWV estimation, three delay estimation principles were tested and produced the following values: intersecting tangents method (M1): 4.72 ± 1.40 m/s, second derivative method (M2): 4.94 ± 1.68 m/s and cross-correlation method (M3): 5.03 ± 1.17 m/s. The cross-correlation method showed a relative high reliability as its least standard deviation.展开更多
Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given. Dispersion equations of propagation mode of strip plate...Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given. Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories, the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.展开更多
The traveling wave group that is defined on conserved physical values is the vehicle of transmission for a unidirectional photon or free particle having a wide wave front. As a stable wave packet, it expresses interna...The traveling wave group that is defined on conserved physical values is the vehicle of transmission for a unidirectional photon or free particle having a wide wave front. As a stable wave packet, it expresses internal periodicity combined with group localization. An uncertainty principle is precisely derived that differs from Heisenberg’s. Also derived is the phase velocity beyond the horizon set by the speed of light. In this space occurs the reduction of the wave packet which is represented by comparing phase velocities in the direction of propagation with the transverse plane. The new description of the wave function for the stable free particle or antiparticle contains variables that were previously ignored. Deterministic physics must always appear probabilistic when hidden variables are bypassed. Secondary hidden variables always occur in measurement. The wave group turns out to be both uncertain and probabilistic. It is ubiquitous in physics and has many consequences.展开更多
The travelling wave group is a stable wave packet. Many surprising results are derived from it. The group is easily quantized for photons and applied, as a solution to the relativistic Klein-Gordon equation, to free p...The travelling wave group is a stable wave packet. Many surprising results are derived from it. The group is easily quantized for photons and applied, as a solution to the relativistic Klein-Gordon equation, to free particles. Further solutions to the resulting algebraic equation provide a stable wave function for free antiparticles. Consistency with the superstructure of quantum electrodynamics is obtained by an assignment to the electron antiparticle of negative mass and negative charge. Then in 5-dimensional space-time-mass, CPT invariance transforms to M’PT conservation in either charged or neutral particles, while many other consequences are also evident.展开更多
不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障...不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障初始行波到达时刻信息,是一种原理简单可靠的单端量快速保护判据,已经在直流电网中成功实践。但在尝试将这类保护应用于交流电网时发现,受波头前陡较缓而难以精确定位波到时刻、依赖高采样率等诸多不利因素影响,存在过大的模糊判别区,除了特长线路外,对绝大部分线路几乎没有应用可行性。波到时刻的精准辨识是一个复杂的非线性问题,利用人工智能的方法进行辨识是一条可行的解决思路,对此,该文提出一种新的单端暂态量主保护判据。首先,分析波达时刻与波形关系,并指出这种关系能够采用机器学习来映射;其次,引入高斯过程回归(Gaussian process regression,GPR),在对初始行波数据进行预处理得到样本集后,输入GPR预测模型进行训练;然后,依据模型评估指标得到最优训练模型以输出高可信性的线-零模波达时差,据此实现了基于行波模量传输时间差的保护判据;最后,在利用PSCAD仿真验证所提保护判据有效性和普适性的基础上,进一步利用现场实测数据对判据进行测试,验证其实用性。该文工作为新能源交流系统下单端暂态量保护的性能提升提供新的解决思路。展开更多
基金Supports from National Natural Science Foundation of China(Grant Nos.U20A20286 and 11972184)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2021ZDK006)+1 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201286)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)are gratefully acknowledged.
文摘Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.
基金Projects(51774138,51804122,51904105)supported by the National Natural Science Foundation of ChinaProjects(E2021209148,E2021209052)supported by the Natural Science Foundation of Hebei Province,China。
文摘By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.
文摘文章《Existence and Multiplicity of Traveling Waves in a lattice Dynamical System》利用单调迭代格式和上下解方法研究了一个格动力系统小于临界波速的行波解的存在性,而当波速等于临界波速时不易通过构造上下解来证明其行波解的存在性,该文利用极限方法证明了原格动力系统的具有临界波速的行波解。
文摘With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult todescribe anisotropic media containing fluid, such as fractures containing gas, shales containing water Based onBlot theory about two-phase anisotropy, with the use of elastic plane wave equations, we get Christoffel equations.We calculate and analyze the effects of frequency on phase velocity, attenuation, amplitude ratio and polarizationdirection of elastic waves of two-phase, transversely isotropic media. Results show that frequency affects slow Pwave the greatest among the four kinds of waves, i.e., fast P wave, slow P wave, fast S wave and slow S wave.Fluid phase amplitude to solid phase amplitude ratio of fast P wave, fast S wave and slow S wave approaches unitfor large dissipation coefficients. Polarization analysis shows that polarization direction of fluid phase displacement is different from, not parallel to or reverse to, that of solid phase displacement in two-phase anisotropic media.
基金This study was supported by the National Natural Science Foundation of China Rsearch (Nos. 41674046, 41440030, and 41574078) and the Fundamental Research Funds for the Central Universities of Lanzhou university (No. lzujbky-2015-175).
文摘Elastic wave propagation and attenuation in porous rock layers with oriented sets of fractures, especially in carbonate reservoirs, are anisotropic owing to fracture sealing, fracture size, fracture density, filling fluid, and fracture strike orientation. To address this problem, we adopt the Chapman effective medium model and carry out numerical experiments to assess the variation in P-wave velocity and attenuation, and the shear-wave splitting anisotropy with the frequency and azimuth of the incident wave. The results suggest that velocity, attenuation, and anisotropy vary as function of azimuth and frequency. The azimuths of the minimum attenuation and maximum P-wave velocity are nearly coincident with the average strike of the two sets of open fractures. P-wave velocity is greater in sealed fractures than open fractures, whereas the attenuation of energy and anisotropy is stronger in open fractures than sealed fractures. For fractures of different sizes, the maximum velocity together with the minimum attenuation correspond to the average orientation of the fracture sets. Small fractures affect the wave propagation less. Azimuth-dependent anisotropy is low and varies more than the other attributes. Fracture density strongly affects the P-wave velocity, attenuation, and shear-wave anisotropy. The attenuation is more sensitive to the variation of fracture size than that of velocity and anisotropy. In the seismic frequency band, the effect of oil and gas saturation on attenuation is very different from that for brine saturation and varies weakly over azimuth. It is demonstrated that for two sets of fractures with the same density, the fast shear-wave polarization angle is almost linearly related with the orientation of one of the fracture sets.
文摘We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of the rolls perpendic- ular to their axes. For a negative enough separation ratio, two types of quite different confined states were documented by applying different control processes. One branch of localized travelling waves survives only in a very narrow band within subcritical regime, while another branch straddles the onset of convection existing both in subcritical and super- critical regions. We elucidated that concentration field and its current are key to understand how confined convection is sustained when conductive state is absolutely unstable, The weak structures in the conducting region are demonstrated too.
基金supported by the National Natural Science Foundation of China(Nos.12122206,52175125,12272129,12304309,and 12302039)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)+1 种基金the Hong Kong Scholars Program of China(No.XJ2022012)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)。
文摘A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.
文摘The propagation of circularly crested thermoelastic diffusive waves in an infinite homogeneous transversely isotropic plate subjected to stress free, isothermal/insulated and chemical potential conditions is investigated in the framework of different thermo- elastic diffusion theories. The dispersion equations of thermoelastic diffusive Lamb type waves are derived. Some special cases of the dispersion equations are also deduced.
基金Council of Scientific and Industrial Research(CSIR)
文摘The present paper is devoted to the study of Rayleigh wave propagation in a homogeneous, transversely isotropic, thermoelastic diffusive half-space, subject to stress free, thermally insulated/isothermal, and chemical potential boundary conditions in the context of the generalized thermoelastic diffusion theory. The Green-Lindsay(GL) theory is used in the study. In this theory, thermodiffusion and thermodiffusion mechanical relaxations are governed by four different time constants. Secular equations for surface wave propagation in the considered media are derived. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient are graphically presented in order to present the analytical results and make comparison. Some special cases of frequency equations are derived from the present investigation.
基金the Council of Scientific and Industrial Research (CSIR) for the financial support
文摘The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.
文摘This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid. The anisotropy considered is of general type, and the attenuating waves in the medium are treated as the inhomogeneous waves. The complex slowness vector is resolved to define the phase velocity, homogeneous attenuation, inhomogeneous attenuation, and angle of attenuation for each of the four attenuating waves in the medium. A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version. An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction, inhomogeneity parameter, frequency regime, anisotropy symmetry, anelasticity of the frame, and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.
文摘The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut = uxx -V′(u) on R. The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut = uxx - V′(u). Whereas a lot is known about the local stability of travelling fronts in parabolic systems, for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type. However, for the combustion or monostable type of V, the problem is much more complicated. In this paper, a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established. And then, the result is extended to the damped wave equation with a case of monostable pushed front.
文摘An aim of current study is to analyze the contribution of reflected longitudinal waves to wave-induced fluid flow(WIFF) in the cracked porous solid.Initially,we investigate the time harmonic plane waves in cracked porous solid by employing the mathematical model proposed by Zhang et al.(2019).The solution is obtained in form of the Christoffel equations.The solution of the Christoffel equations indicates that there exist four(three dilatational and one shear) waves.These waves are attenuated in nature due to their complex and frequency-dependent velocities.The reflection coefficients are calculated at the sealed pore stress-free surface of cracked porous solid for the incidence of P1 and SV waves.It is found that three longitudinal waves contribute to WIFF and the contribution of these waves to the induced fluid in the cracked porous solid is analyzed using the reflection coefficients of these longitudinal waves.We analytically show that the fluid flow induced by these longitudinal waves is linked directly to their respective reflection coefficients.Finally,a specific numerical example is considered to discuss and to depict the impact of various parameters on the characteristics of propagation like phase velocity/attenuation,reflection coefficients and WIFF of longitudinal waves.
文摘The current study presents a new protocol for local pulse wave velocity (PWV) measurement using dynamic MR sequences, which have a high temporal resolution (TR < 6 ms). MR images were obtained at two positions along the common carotid artery, separated by a distance of 5 cm. In each phase of a MR series, carotid region was automatically extracted and then its area distension waveform could be obtained. Sixteen volunteers with no symptoms of cardiovascular diseases were studied. For local PWV estimation, three delay estimation principles were tested and produced the following values: intersecting tangents method (M1): 4.72 ± 1.40 m/s, second derivative method (M2): 4.94 ± 1.68 m/s and cross-correlation method (M3): 5.03 ± 1.17 m/s. The cross-correlation method showed a relative high reliability as its least standard deviation.
基金Project supported by the National Natural Science Foundation of China (No. 10572045)
文摘Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given. Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories, the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.
文摘The traveling wave group that is defined on conserved physical values is the vehicle of transmission for a unidirectional photon or free particle having a wide wave front. As a stable wave packet, it expresses internal periodicity combined with group localization. An uncertainty principle is precisely derived that differs from Heisenberg’s. Also derived is the phase velocity beyond the horizon set by the speed of light. In this space occurs the reduction of the wave packet which is represented by comparing phase velocities in the direction of propagation with the transverse plane. The new description of the wave function for the stable free particle or antiparticle contains variables that were previously ignored. Deterministic physics must always appear probabilistic when hidden variables are bypassed. Secondary hidden variables always occur in measurement. The wave group turns out to be both uncertain and probabilistic. It is ubiquitous in physics and has many consequences.
文摘The travelling wave group is a stable wave packet. Many surprising results are derived from it. The group is easily quantized for photons and applied, as a solution to the relativistic Klein-Gordon equation, to free particles. Further solutions to the resulting algebraic equation provide a stable wave function for free antiparticles. Consistency with the superstructure of quantum electrodynamics is obtained by an assignment to the electron antiparticle of negative mass and negative charge. Then in 5-dimensional space-time-mass, CPT invariance transforms to M’PT conservation in either charged or neutral particles, while many other consequences are also evident.
文摘不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障初始行波到达时刻信息,是一种原理简单可靠的单端量快速保护判据,已经在直流电网中成功实践。但在尝试将这类保护应用于交流电网时发现,受波头前陡较缓而难以精确定位波到时刻、依赖高采样率等诸多不利因素影响,存在过大的模糊判别区,除了特长线路外,对绝大部分线路几乎没有应用可行性。波到时刻的精准辨识是一个复杂的非线性问题,利用人工智能的方法进行辨识是一条可行的解决思路,对此,该文提出一种新的单端暂态量主保护判据。首先,分析波达时刻与波形关系,并指出这种关系能够采用机器学习来映射;其次,引入高斯过程回归(Gaussian process regression,GPR),在对初始行波数据进行预处理得到样本集后,输入GPR预测模型进行训练;然后,依据模型评估指标得到最优训练模型以输出高可信性的线-零模波达时差,据此实现了基于行波模量传输时间差的保护判据;最后,在利用PSCAD仿真验证所提保护判据有效性和普适性的基础上,进一步利用现场实测数据对判据进行测试,验证其实用性。该文工作为新能源交流系统下单端暂态量保护的性能提升提供新的解决思路。