期刊文献+
共找到410篇文章
< 1 2 21 >
每页显示 20 50 100
Quantitative analysis of the morphing wing mechanism of raptors:Morphing kinematics of Falco peregrinus wing
1
作者 唐迪 车婧琦 +4 位作者 金伟杰 崔亚辉 范忠勇 杨茵 刘大伟 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期68-77,共10页
Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bi... Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bionic inspiration for unmanned aerial vehicles(UAV)design.However,morphing wing motions of Falco peregrinus with multi postures cannot be consulted since such a motion database was nonexistent.This study aimed to provide data reference for future research in wing morphing kinetics.We used the computed tomography(CT)approach to obtain nine critical postures of the Falco peregrinus wing skeleton,followed with motion analysis of each joint and bone.Based on the obtained motion database,a six-bar kinematic model was proposed to regenerate wing motions with a high fidelity. 展开更多
关键词 RAPTOR wing morphing skeletal mechanism CT scans six-bar model
下载PDF
Mechanical behaviors and damage constitutive model of ceramics under shock compression 被引量:10
2
作者 Jianguo Ning Huilan Ren Ping Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第3期305-315,共11页
One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferom... One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferometer system for any reflector (VISAR) was used to obtain the free surface velocity profile and determine the Hugoniot elastic limit. The Hugoniot curves were fitted with the experimental data. From Hugoniot curves the compressive behaviors of AD90 alumina were found to change typically from elastic to "plastic". The dynamic mechanical behaviors for alumina under impact loadings were analyzed by using the path line principle of Lagrange analysis, including the nonlinear characteristics, the strain rate dependence, the dispersion and declination of shock wave in the material. A damage model applicable to ceramics subjected to dynamic compressive loading has been developed. The model was based on the damage micromechanics and wing crack nucleation and growth. The effects of parameters of both the micro-cracks nucleation and the initial crack size on the dynamic fracture strength were discussed. The results of the dynamic damage evolution model were compared with the experimental results and a good agreement was found. 展开更多
关键词 mechanical behaviors Lagrange analysis DAMAGE Tensile wing crack
下载PDF
A simulation-based study on longitudinal gust response of flexible flapping wings 被引量:5
3
作者 Toshiyuki Nakata Ryusuke Noda +1 位作者 Shinobu Kumagai Hao Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1048-1060,共13页
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic sh... Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles. 展开更多
关键词 INSECT FLIGHT FLAPPING wing FLEXIBLE wing GUST response Fluid-structure interaction mechanical feedback
下载PDF
A Review of Research on the Mechanical Design of Hoverable Flapping Wing Micro-Air Vehicles 被引量:3
4
作者 Shengjie Xiao Kai Hu +2 位作者 Binxiao Huang Huichao Deng Xilun Ding 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1235-1254,共20页
Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles i... Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests. 展开更多
关键词 Hoverable Flapping wing Insect-inspired mechanical design Motor drive Intelligent actuator
原文传递
A Study on the Wing Characteristics of Flies
5
作者 Seiichi Sudo Yuki Abe +2 位作者 Kohei Kitadera Tetsuya Yano Muneo Futamura 《Journal of Energy and Power Engineering》 2012年第11期1745-1750,共6页
This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surfa... This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surface of fly was conducted to examine the wing characteristics. Microscopic observation of fly's wings were also conducted by using a laser beam microscope. The results of a series of observation and measurement revealed the flight characteristics of flies, such as the wing tip velocity, wing path, wing flexibility, wing structure, resistance to rain drops, and so forth. 展开更多
关键词 Fluid mechanics insect flight flapping flight fly wing DIPTERA wing characteristics.
下载PDF
Numerical investigation on aerodynamic performance of a bionic flapping wing 被引量:5
6
作者 Xinghua CHANG Laiping ZHANG +1 位作者 Rong MA Nianhua WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第11期1625-1646,共22页
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are consid... This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design. 展开更多
关键词 FLAPPING wing bird-like FLAPPING unsteady flow radial basis function (RBF) hybrid dynamic mesh span-wise TWISTING mechanism
下载PDF
Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight 被引量:3
7
作者 管子武 余永亮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第12期1607-1618,共12页
The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat... The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight. 展开更多
关键词 bat wing TWISTING panel method aerodynamic mechanism
下载PDF
Wing crack model subjected to high hydraulic pressure and far field stresses and its numerical simulation 被引量:4
8
作者 赵延林 曹平 +2 位作者 王卫军 万文 陈锐 《Journal of Central South University》 SCIE EI CAS 2012年第2期578-585,共8页
By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far ... By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses. 展开更多
关键词 rock mechanics wing crack hydraulic pressure numerical simulation
下载PDF
Wing crack propagation model under high hydraulic pressure in compressive-shear stress state 被引量:4
9
作者 ZHAO Yan-lin WANG Wen-jun 《Journal of Coal Science & Engineering(China)》 2011年第1期34-38,共5页
A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity fa... A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses. 展开更多
关键词 rock mechanics wing crack hydraulic pressure
下载PDF
Development of Air Vehicle with Active Flapping and Twisting of Wing 被引量:9
10
作者 Sangyol Yoon Lac-Hyong Kang Sungho Jo 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期1-9,共9页
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis... This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping. 展开更多
关键词 BIOMIMETIC flapping-wing air vehicle FLAPPING TWISTING voice coil motor linkage mechanism
下载PDF
WINGS系统纺预取向丝的结构与性能稳定性分析
11
作者 杨彬 颜志勇 薛元 《合成纤维》 CAS 2011年第11期21-24,共4页
以WINGS(Winding Integrated Gadet Solution)纺丝系统和传统ACW(Advanced Craft Winde)r纺丝系统为研究对象,比较同一纺丝位不同丝饼间预取向丝(POY)在相同纺丝条件下的结晶度、双折射率、力学性能、沸水收缩率等的变化规律。研究发现,... 以WINGS(Winding Integrated Gadet Solution)纺丝系统和传统ACW(Advanced Craft Winde)r纺丝系统为研究对象,比较同一纺丝位不同丝饼间预取向丝(POY)在相同纺丝条件下的结晶度、双折射率、力学性能、沸水收缩率等的变化规律。研究发现,WINGS纺丝系统同一纺丝位不同丝饼间POY的双折射率、结晶度、断裂强度、断裂伸长率、初始模量及沸水收缩率各值的变化率(CV值)均低于传统ACW工艺生产的POY的值,表明WINGS纺丝系统制得的POY有更稳定的结构和性能。 展开更多
关键词 wingS POY 结晶取向结构 力学性能
下载PDF
Tensile Deformation Properties of Corrugated Style Fiber Reinforced Composite Skin for a Morphing Wing 被引量:3
12
作者 ZHOU Chun-hua WANG Bang-feng LIU Zhao MOU Chang-wei 《International Journal of Plant Engineering and Management》 2011年第1期41-46,共6页
A type of skin structure which is made by a Circular Arc Corrugated Style Fiber Reinforced Composite (CACSFRC) is proposed to meet the requirements of the large and continuous deformation and high load capacity of a... A type of skin structure which is made by a Circular Arc Corrugated Style Fiber Reinforced Composite (CACSFRC) is proposed to meet the requirements of the large and continuous deformation and high load capacity of a morphing wing skin. A mechanical model is developed to predict the tensile deformation properties and equiva- lent elastic modulus of the composite skin. Corrugated and plane skin samples are manufactured and tested. The theoretical analysis and tension tests show that CCSFRC skin has markedly much more tensile deforming capability than plane skin in the range of elasticity. The quantity of tensile deformation is in direct proportion to the number of ripples, and in inverse proportion to the cubic of ratio thickness, while the equivalent elastic modulus is in direct proportion to the cubic of ratio thickness approximately. Experiments prove that the predicted theoretical models are reliable and effective. 展开更多
关键词 morphing wing SKIN COMPOSITE mechanics analysis
下载PDF
Design of a Bio-inspired,Two-winged,Flapping-wing Micro Air Vehicle with High-lift Performance
13
作者 Kai Hu Huichao Deng +2 位作者 Shengjie Xiao Gongyu Yang Yuhong Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1191-1207,共17页
In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vert... In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks. 展开更多
关键词 Flapping wing Biologically inspired robots mechanical design Flight dynamics Damping enhancement
原文传递
Resonance mechanism of flapping wing based on fluid structure interaction simulation 被引量:1
14
作者 Yueyang GUO Wenqing YANG +1 位作者 Yuanbo DONG Dong XUE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期243-262,共20页
Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency... Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance. 展开更多
关键词 Flexible Flapping wing(FFW) Acoustic Structure Interaction Modal(ASIM) Fluid Structure Interaction(FSI) Resonance mechanism Aerodynamic performance
原文传递
Quantitative analysis of the morphing wing mechanism of raptors: Analysis methods, folding motions, and bionic design of Falco Peregrinus
15
作者 Di Tang Xipeng Huang +9 位作者 Jinqi Che Weijie Jin Yahui Cui Yangjun Chen Yuxiao Yuan Zhongyong Fan Weiwei Lu Siyu Wang Yin Yang Dawei Liu 《Fundamental Research》 CAS CSCD 2024年第2期344-352,共9页
Raptors can change the shape and area of their wings to an exceptional degree in a fast and efficient manner,surpassing other birds,insects,or bats.Some researchers have focused on the functional properties of muscle ... Raptors can change the shape and area of their wings to an exceptional degree in a fast and efficient manner,surpassing other birds,insects,or bats.Some researchers have focused on the functional properties of muscle skeletons,mechanics,and flapping robot design.However,the wing motion of the birds of prey has not been measured quantitatively,and synthetic bionic wings with morphing abilities similar to raptors are far from reality.Therefore,in the current study,a 3D suspension system for holding bird carcasses was designed and fabricated to fasten the wings of Falco Peregrinus with a series of morphing postures.Subsequently,the wing skeleton of the falcon was scanned during extending motions using the computed tomography(CT)approach to obtain three consecutive poses.Subsequently,the skeleton was reconstructed to identify the contribution of the forelimb bones to the extending/folding motions.Inspired by these findings,we propose a simple mechanical model with four bones to form a wing-morphing mechanism using the proposed pose optimisation method.Finally,a bionic wing mechanism was implemented to imitate the motion of the falcon wing—divided into inner and outer wings with folding and twisting motions.The results show that the proposed four-bar mechanism can track bone motion paths with high fidelity. 展开更多
关键词 Falco Peregrinus RAPTOR Suspension system CT scan Bionic wings Four-bar mechanism
原文传递
Lift system optimization for hover-capable flapping wing micro air vehicle
16
作者 Shengjie XIAO Yongqi SHI +4 位作者 Zemin WANG Zhe NI Yuhang ZHENG Huichao DENG Xilun DING 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第3期61-75,共15页
A key challenge is using bionic mechanisms to enhance aerodynamic performance of hover-capable flapping wing micro air vehicle(FWMAV).This paper presented a new lift system with high lift and aerodynamic efficiency,wh... A key challenge is using bionic mechanisms to enhance aerodynamic performance of hover-capable flapping wing micro air vehicle(FWMAV).This paper presented a new lift system with high lift and aerodynamic efficiency,which use a hummingbird as a bionic object.This new lift system is able to effectively utilize the high lift mechanism of hummingbirds,and this study innovatively utilizes elastic energy storage elements and installs them at the wing root to help improve aerodynamic performance.A flapping angle of 154°is achieved through the optimization of the flapping mechanism parameters.An optimized wing shape and parameters are obtained through experimental studies on the wings.Consequently,the max net lift generated is 17.6%of the flapping wing vehicle’s weight.Moreover,energy is stored and released periodically during the flapping cycle,by imitating the musculoskeletal system at the wing roots of hummingbirds,thereby improving the energy utilization rate of the FWMAV and reducing power consumption by 4.5%under the same lift.Moreover,strength verification and modal analyses are conducted on the flapping mechanism,and the weight of the flapping mechanism is reduced through the analysis and testing of different materials.The results show that the lift system can generate a stable lift of 31.98 g with a wingspan of 175 mm,while the lift system weighs only 10.5 g,providing aerodynamic conditions suitable for high maneuverability flight of FWMAVs. 展开更多
关键词 lift optimization flapping wing elastic energy hovering flapping mechanism
原文传递
An efficient stiffness analysis model based on shear deformation theory for flexible skin shear variable-sweep wing
17
作者 Yue BAI Guang YANG +3 位作者 Hong XIAO Hongwei GUO Rongqiang LIU Bei LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期445-458,共14页
Fixed-wing aircraft cannot maintain optimal aerodynamic performance at different flight speeds. As a type of morphing aircraft, the shear variable-sweep wing(SVSW) can dramatically improve its aerodynamic performance ... Fixed-wing aircraft cannot maintain optimal aerodynamic performance at different flight speeds. As a type of morphing aircraft, the shear variable-sweep wing(SVSW) can dramatically improve its aerodynamic performance by altering its shape to adapt to various flight conditions.In order to achieve smooth continuous shear deformation, SVSW's skin adopts a flexible composite skin design instead of traditional aluminum alloy materials. However, this also brings about the non-linear difficulty in stiffness modeling and calculation. In this research, a new SVSW design and efficient stiffness modeling method are proposed. Based on shear deformation theory, the flexible composite skin is equivalently modeled as diagonally arranged nonlinear springs, simulating the elastic force interaction between the skin and the mechanism. By shear loading tests of flexible composite skin, the accuracy of this flexible composite skin modeling method is verified. The SVSW stiffness model was established, and its accuracy was verified through static loading tests. The effects of root connection, sweep angles, and flexible composite skin on the SVSW stiffness are analyzed. Finally, considering three typical flight conditions of SVSW: low-speed flow(Ma = 0.3,Re = 5.82 × 10^(6)), transonic flow(Ma = 0.9, Re = 3.44 × 10^(6)), and supersonic flow(Ma = 3,Re = 7.51 × 10^(6)), the stiffness characteristics of SVSW under flight conditions were evaluated.The calculated results guide the application of SVSW. 展开更多
关键词 Shear variable-sweep wing(SVSW) Flexible composite skin Morphing mechanism Stiffness analysis Loading tests Structure
原文传递
Review on ultra-lightweight flapping-wing nano air vehicles:Artificial muscles,flight control mechanism,and biomimetic wings 被引量:7
18
作者 Liang WANG Bifeng SONG +1 位作者 Zhongchao SUN Xiaojun YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期63-91,共29页
Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant r... Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance. 展开更多
关键词 Actuators Artificial muscle Biomimetic wings Flapping wing Flight control mechanism Nano Air Vehicles(NAVs)
原文传递
Mechanism analysis of hysteretic aerodynamic characteristics on variable-sweep wings 被引量:4
19
作者 Lifang ZENG Liu LIU +1 位作者 Xueming SHAO Jun LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期212-222,共11页
Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus o... Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus on several static states in the varying sweep process,which ignore the unsteady aerodynamic characteristics.However,deviations to static aerodynamic forces are inevitably caused by dynamic sweep motion.In this work,first,unsteady aerodynamic characteristics on a typical variable-sweep UAV with large aspect ratio were analyzed.Then,deep mechanism of unsteady aerodynamic characteristics in the varying sweep process was studied.Finally,numerical simulation method integrated with structured moving overset grids was applied to solve the unsteady fluid of varying sweep process.The simulation results of a sweep forward-backward circle show a distinct dynamic hysteresis loop surrounding the static data for the aerodynamic forces.Compared with the static lift coefficients,at the same sweep angles,dynamic lift coefficient in sweep forward process are all smaller,while dynamic sweep backward lift coefficient are all larger.In addition,dynamic deviations to static lift coefficient are positively related with the varying sweep speeds.Mechanism study on the unsteady aerodynamic characteristics indicates that three key factors lead to the dynamic hysteresis loop in varying sweep process.They are the effects of additional velocity caused by varying sweep motion,the effects of flow hysteresis and viscosity.The additional velocity induced by sweep motion affects the transversal flow direction along the wing and the effective angle of attack at the airfoil profile.The physical properties of flow,the hysteresis and viscosity affect the unsteady aerodynamic characteristics by flow separation and induced vortexes. 展开更多
关键词 HYSTERESIS MECHANISM Numerical simulation Unsteady aerodynamic characteristics Variable-sweep wings
原文传递
Flight control of a flying wing aircraft based on circulation control using synthetic jet actuators 被引量:3
20
作者 Zhijie ZHAO Xiong DENG +3 位作者 Zhenbing LUO Wenqiang PENG Jianyuan ZHANG Jiefu LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期152-164,共13页
To achieve the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a longitudinal aerodynamic control technology based on circulation control using trailing-edge synthetic jet actua... To achieve the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a longitudinal aerodynamic control technology based on circulation control using trailing-edge synthetic jet actuators was proposed without the movement of rudders.Effects on the longitudinal aerodynamic characteristics of a small-sweep FWA were investigated.Then,flight tests were carried out to verify the control abilities,providing a novel technology for the design of a future rudderless FWA.Results show that synthetic jets could narrow the dead zone area,improve the flow velocity near the trailing edge,and then move the trailing-edge separation point and the leading-edge stagnation point downwards,which make the effective Attack of Angle(AOA)increase,thereby enhancing the pressure envelope area.Circulation control based on synthetic jets could improve the lift,drag and nose-down moment.The variations of lift and nosedown moment decrease with the growth of AOA caused by the improved reverse pressure gradient and the weakened circulation control efficiency.Finally,synthetic jet actuators were integrated into the trailing edge of a small-sweep FWA,which could realize the roll and pitch control without deflections of rudders during the cruise stage,and the maximum roll and pitch angular velocity are 12.64(°)/s and 8.51(°)/s,respectively. 展开更多
关键词 Synthetic jets Flying wing aircraft Circulation control Control mechanism Flight test
原文传递
上一页 1 2 21 下一页 到第
使用帮助 返回顶部