Chitosan biguanidine hydrochloride(CGH) has been synthesized by the guanidineylation reaction of chitosan with dicyandiamide.The structures of CGH were characterized by Fourier transform infrared spectroscopy and 13CN...Chitosan biguanidine hydrochloride(CGH) has been synthesized by the guanidineylation reaction of chitosan with dicyandiamide.The structures of CGH were characterized by Fourier transform infrared spectroscopy and 13CNMR spectra.In this paper,we used citric acid(CA) as a crosslinking agent,mixed with CGH to perform a pad-drycure treatment on wool fabric to study reaction mechanism during crosslinking with the help of Fourier transform infrared spectroscopy(FT-IR) and scanning electron microscopy(SEM).Dyeing characteristics of CGH treated wool fabric was assessed.The effects of CGH concentration,curing temperature,dipping time,pH value on color yield of reactive dyes on wool fibres were investigated.Fastness properties of the modified wool fabric to laundering and crocking have also been discussed.Fourier transform infrared spectroscopy(FT-IR) showed that CA produce esterification with the-OH group of the wool and transamidation with the-NH2 group of the CGH to form a crosslink.Scanning electron microscopy(SEM) analysis showed the CGH firmly attached to the surface of wool fibre.It was found that the CGH pretreated wool fabrics had significantly improved dyeability characteristics.It is worthwhile to mention that the CGH treated samples have antibacterial potential due to the antibacterial property of chitosan molecules and guanidinium salts.展开更多
In this study,we used citric acid(CA)as a crosslinking agent,mixed with polyhexamethylene biguanide,to perform a pad-dry-cure treatment on wool fabrics to study its antimicrobial effects and physical properties.
文摘Chitosan biguanidine hydrochloride(CGH) has been synthesized by the guanidineylation reaction of chitosan with dicyandiamide.The structures of CGH were characterized by Fourier transform infrared spectroscopy and 13CNMR spectra.In this paper,we used citric acid(CA) as a crosslinking agent,mixed with CGH to perform a pad-drycure treatment on wool fabric to study reaction mechanism during crosslinking with the help of Fourier transform infrared spectroscopy(FT-IR) and scanning electron microscopy(SEM).Dyeing characteristics of CGH treated wool fabric was assessed.The effects of CGH concentration,curing temperature,dipping time,pH value on color yield of reactive dyes on wool fibres were investigated.Fastness properties of the modified wool fabric to laundering and crocking have also been discussed.Fourier transform infrared spectroscopy(FT-IR) showed that CA produce esterification with the-OH group of the wool and transamidation with the-NH2 group of the CGH to form a crosslink.Scanning electron microscopy(SEM) analysis showed the CGH firmly attached to the surface of wool fibre.It was found that the CGH pretreated wool fabrics had significantly improved dyeability characteristics.It is worthwhile to mention that the CGH treated samples have antibacterial potential due to the antibacterial property of chitosan molecules and guanidinium salts.
文摘In this study,we used citric acid(CA)as a crosslinking agent,mixed with polyhexamethylene biguanide,to perform a pad-dry-cure treatment on wool fabrics to study its antimicrobial effects and physical properties.