In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe...In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.展开更多
为了探究裂缝扩展路径及在不同条件下的扩展规律,该文基于ABAQUS软件中扩展有限元方法(extended finite element method,XFEM)模拟分析沥青混凝土半圆弯曲断裂试验中的裂缝扩展规律。通过对比他人试验及数值模型数据,验证了基于XFEM的...为了探究裂缝扩展路径及在不同条件下的扩展规律,该文基于ABAQUS软件中扩展有限元方法(extended finite element method,XFEM)模拟分析沥青混凝土半圆弯曲断裂试验中的裂缝扩展规律。通过对比他人试验及数值模型数据,验证了基于XFEM的有限元模型分析裂缝扩展的有效性。此外,该文建立干法油石分离再生复合路面二维模型,研究模型中施工缝宽度、预埋裂缝长度、偏转角及预设位置对裂缝尖端应力影响,结果表明尖端应力随着裂缝长度、偏转角增加而增大,而随着施工缝宽度增大呈现先减小后增大趋势,随着偏移距离变大则先增大后减小。该文研究结果有助于复合路面反射裂缝定量分析与表征,为复合路面设计及后期养护提供了参考与依据。展开更多
文摘In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.
文摘为了探究裂缝扩展路径及在不同条件下的扩展规律,该文基于ABAQUS软件中扩展有限元方法(extended finite element method,XFEM)模拟分析沥青混凝土半圆弯曲断裂试验中的裂缝扩展规律。通过对比他人试验及数值模型数据,验证了基于XFEM的有限元模型分析裂缝扩展的有效性。此外,该文建立干法油石分离再生复合路面二维模型,研究模型中施工缝宽度、预埋裂缝长度、偏转角及预设位置对裂缝尖端应力影响,结果表明尖端应力随着裂缝长度、偏转角增加而增大,而随着施工缝宽度增大呈现先减小后增大趋势,随着偏移距离变大则先增大后减小。该文研究结果有助于复合路面反射裂缝定量分析与表征,为复合路面设计及后期养护提供了参考与依据。