The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating te...The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating temperature increases the mass transfer coefficient and increases the mass transfer rate. Theoretical and experimental data show that sulfur removal in 4.5 W magnetic field is desirable. The increase in sulfur removal percentage in the magnetic field of 4.5 W and 6.75 W is about 16.4% and 15.2%, respectively. According to the obtained results, the effect of temperature increase from 18.8°C to 23.4°C is more evident than the effect of temperature change from 23.4°C to 32.2°C. Because more thermal energy is needed to provide higher temperatures. Therefore, the temperature of 23.4°C is reported as the optimal temperature. The results of this research show that the percentage of sulfur removal is also high at this temperature.展开更多
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
Waste water treatment process(WWTP)control has been attracting more and more attention.However,various undesired factors,such as disturbance,uncertainties,and strong nonlinear couplings,propose big challenges to the c...Waste water treatment process(WWTP)control has been attracting more and more attention.However,various undesired factors,such as disturbance,uncertainties,and strong nonlinear couplings,propose big challenges to the control of a WWTP.In order to improve the control performance of the closed-loop system and guarantee the discharge requirements of the effluent quality,rather than take the model dependent control approaches,an active disturbance rejection control(ADRC)is utilized.Based on the control signal and system output,a phase optimized ADRC(POADRC)is designed to control the dissolved oxygen and nitrate concentration in a WWTP.The phase advantage of the phase optimized extended state observer(POESO),convergence of the POESO,and stability of the closed-loop system are analyzed from the theoretical point of view.Finally,a commonly accepted benchmark simulation model no.1.(BSM1)is utilized to test the POESO and POADRC.Linear active disturbance rejection control(LADRC)and the suggested proportion-integration(PI)control are taken to make a comparative research.Both system responses and performance index values confirm the advantage of the POADRC over the LADRC and the suggested PI control.Numerical results show that,as a result of the leading phase of the total disturbance estimation,the POESO based POADRC is an effective and promising way to control the dissolved oxygen and nitrate concentration so as to ensure the effluent quality of a WWTP.展开更多
The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in th...The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied.Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages.Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward.With the rapid development of automotive industry,there will be certainly a new upsurge of research and application of air cushion furnace for heat treatment of aluminum alloy auto body sheet.展开更多
The characteristics and harm of high concentrations of organic wastewater were introducecl firstly, and then several treatment processes and effects of high concentrations of organic wastewater were summarized, which ...The characteristics and harm of high concentrations of organic wastewater were introducecl firstly, and then several treatment processes and effects of high concentrations of organic wastewater were summarized, which can provide theoretical references for the choice of wastewater treatment process.展开更多
[Objectives]To detect the protective effects of six protopanaxatriols(PPTs)on hypoxia/reoxygenation(H/R)induced cardiomyocyte injury by different treatments.[Methods]The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetra...[Objectives]To detect the protective effects of six protopanaxatriols(PPTs)on hypoxia/reoxygenation(H/R)induced cardiomyocyte injury by different treatments.[Methods]The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT)assay was used for detecting the protective effects of six PPTs including ginsenoside Rg1,Re,Rf,Rg2,(R)Rh1 and(S)Rh1 on cell viability reduced by H/R in different treatments.And the adenosine triphosphate(ATP)content and mitochondrial membrane potential(MMP)were used for detecting the mitochondrial function change during PPTs treatment.[Results]Among six PPTs,ginsenoside Rg1,Re,Rf,Rg2 and(R)Rh1 at the concentration of 12.5μM significantly increased the cell survival when treated before and during H/R.These five PPTs also significantly increased the ATP content and MMP reduced by H/R in the same manner.In comparison,only Rg1 significantly increased the cell viability compared with H/R group by pretreating and treating the cells during hypoxia process.[Conclusions]Different treatments affect the protective effects of PPTs.When treated before and during H/R,ginsenoside Rg1,Re,Rf,Rg2 and(R)Rh1 protect the cardiomyocyte against H/R injury mitochondrial function,and only ginsenoside Rg1 has protective effects when treated before and during hypoxia process.展开更多
Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wa...Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wastewater purification processes do not effectively remove many chemical contaminants,展开更多
In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of w...In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of whole membrane water treatment technology in environmental protection.It is hoped that this analysis can be helpful for the rational application of the whole membrane water treatment technology and the improvement of environmental protection quality.展开更多
This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.th...This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O_2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.展开更多
Objective To investigate the feasibility and surgical effects of posterior articular process approach for the treatment of L1-L3 lumbar disc herniation.Methods A retrospective study,of17patients with upper lumbar inte...Objective To investigate the feasibility and surgical effects of posterior articular process approach for the treatment of L1-L3 lumbar disc herniation.Methods A retrospective study,of17patients with upper lumbar intervertebml disc展开更多
According to different mechanism of microbial degradation of organics, this article divided the treatment processes of garbage landfill into four kinds, analyzed each kind of the treatment leachate process and present...According to different mechanism of microbial degradation of organics, this article divided the treatment processes of garbage landfill into four kinds, analyzed each kind of the treatment leachate process and presented a better improved process. (Author abstract) 4 Refs.展开更多
It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotox...It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotoxicity reduction of industrial wastewater are still limited.In this study,the toxic organics removal and biotoxicity reduction of coal chemical wastewater(CCW)along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced(BE)process-anoxic/oxic(A/O)process-advanced treatment process was evaluated.This process performed great removal efficiency of COD,total phenol,NH_(4)^(+)-N and total nitrogen.And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity,genotixicity and oxidative damage.The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila.But the acute biotoxicity was significantly reduced in BE-A/O process.And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment.The polar organics in CCW were identified as the main biotoxicity contributors.Phenols were positively correlated with acute biotoxicity,while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity.Although the biotoxicity was effectively reduced in the novel full-scale treatment process,the effluent still performed potential biotoxicity,which need to be further explored in order to reduce environmental risk.展开更多
Thermal Barrier Coatings(TBCs)technology is key to improving the service temperature and the productivity of aircraft engines.The performance and failure life of TBCs are strongly influenced by surface integrity and m...Thermal Barrier Coatings(TBCs)technology is key to improving the service temperature and the productivity of aircraft engines.The performance and failure life of TBCs are strongly influenced by surface integrity and microstructure.Therefore,recognizing failure mechanisms and developing effective surface treatment processes are crucial for further improving the reliability and durability of TBCs.This paper explains the primary reasons for TBC failure,emphasizing on how integrity of surface and interface influences interfacial oxidation,high-temperature erosion,and Calcium-Magnesium-Alumina-Silicate(CMAS)corrosion.Furthermore,this paper completely and rigorously evaluates the research status of TBCs surface treatment processes,including the characteristics and effects of various processes,and describes the requirements and goals of pretreatment and post-treatment.In addition,a potential direction for the development and application of TBCs surface treatment is suggested.展开更多
Emerging pollutants,such as antibiotics and antibiotic-resistance genes,are becoming increasingly important sources of safety and health concerns.Drinking water safety,which is closely related to human health,should r...Emerging pollutants,such as antibiotics and antibiotic-resistance genes,are becoming increasingly important sources of safety and health concerns.Drinking water safety,which is closely related to human health,should receive more attention than natural water body safety.However,minimal research has been performed on the efficacy of existing treatment processes in water treatment plants for the removal of antibiotics and antibiotic resistance genes.To address this research gap,this study detected and analyzed six main antibiotics and nine antibiotic resistance genes in the treatment processes of two drinking water plants in Wuhan.Samples were collected over three months and then detected and analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry and fluorescence quantitation.The total concentrations of antibiotics and antibiotic resistance genes in the influent water of the two water plants were characterized as December>March>June.The precipitation and filtration processes of the Zou Maling Water Plant and Yu Shidun Water Plant successfully removed the antibiotics.The ozone-activated carbon process increased the removal rate of most antibiotics to 100%.However,a large amount of antibiotic resistance gene residues remained in the effluents of the two water plants.The experiments demonstrated that the existing ozone-activated carbon processes could not effectively remove antibiotic resistance genes.This study provides a reference for the optimization of drinking water treatment processes for antibiotics and antibiotic resistance gene removal.展开更多
Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel sl...Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling...A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.展开更多
The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. S...The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.展开更多
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ...In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.展开更多
文摘The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating temperature increases the mass transfer coefficient and increases the mass transfer rate. Theoretical and experimental data show that sulfur removal in 4.5 W magnetic field is desirable. The increase in sulfur removal percentage in the magnetic field of 4.5 W and 6.75 W is about 16.4% and 15.2%, respectively. According to the obtained results, the effect of temperature increase from 18.8°C to 23.4°C is more evident than the effect of temperature change from 23.4°C to 32.2°C. Because more thermal energy is needed to provide higher temperatures. Therefore, the temperature of 23.4°C is reported as the optimal temperature. The results of this research show that the percentage of sulfur removal is also high at this temperature.
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
基金supported by the Key program of Beijing Municipal Education Commission(KZ201810011012)National Natural Science Foundation of China(61873005)Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Fiveyear Plan(CIT&TCD201704044)。
文摘Waste water treatment process(WWTP)control has been attracting more and more attention.However,various undesired factors,such as disturbance,uncertainties,and strong nonlinear couplings,propose big challenges to the control of a WWTP.In order to improve the control performance of the closed-loop system and guarantee the discharge requirements of the effluent quality,rather than take the model dependent control approaches,an active disturbance rejection control(ADRC)is utilized.Based on the control signal and system output,a phase optimized ADRC(POADRC)is designed to control the dissolved oxygen and nitrate concentration in a WWTP.The phase advantage of the phase optimized extended state observer(POESO),convergence of the POESO,and stability of the closed-loop system are analyzed from the theoretical point of view.Finally,a commonly accepted benchmark simulation model no.1.(BSM1)is utilized to test the POESO and POADRC.Linear active disturbance rejection control(LADRC)and the suggested proportion-integration(PI)control are taken to make a comparative research.Both system responses and performance index values confirm the advantage of the POADRC over the LADRC and the suggested PI control.Numerical results show that,as a result of the leading phase of the total disturbance estimation,the POESO based POADRC is an effective and promising way to control the dissolved oxygen and nitrate concentration so as to ensure the effluent quality of a WWTP.
文摘The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied.Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages.Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward.With the rapid development of automotive industry,there will be certainly a new upsurge of research and application of air cushion furnace for heat treatment of aluminum alloy auto body sheet.
文摘The characteristics and harm of high concentrations of organic wastewater were introducecl firstly, and then several treatment processes and effects of high concentrations of organic wastewater were summarized, which can provide theoretical references for the choice of wastewater treatment process.
基金Supported by General Colleges and Universities Youth Innovative Talents Project of Guangdong Province(2019GKQNCX134)Guangdong Doctoral Workstation Funds。
文摘[Objectives]To detect the protective effects of six protopanaxatriols(PPTs)on hypoxia/reoxygenation(H/R)induced cardiomyocyte injury by different treatments.[Methods]The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT)assay was used for detecting the protective effects of six PPTs including ginsenoside Rg1,Re,Rf,Rg2,(R)Rh1 and(S)Rh1 on cell viability reduced by H/R in different treatments.And the adenosine triphosphate(ATP)content and mitochondrial membrane potential(MMP)were used for detecting the mitochondrial function change during PPTs treatment.[Results]Among six PPTs,ginsenoside Rg1,Re,Rf,Rg2 and(R)Rh1 at the concentration of 12.5μM significantly increased the cell survival when treated before and during H/R.These five PPTs also significantly increased the ATP content and MMP reduced by H/R in the same manner.In comparison,only Rg1 significantly increased the cell viability compared with H/R group by pretreating and treating the cells during hypoxia process.[Conclusions]Different treatments affect the protective effects of PPTs.When treated before and during H/R,ginsenoside Rg1,Re,Rf,Rg2 and(R)Rh1 protect the cardiomyocyte against H/R injury mitochondrial function,and only ginsenoside Rg1 has protective effects when treated before and during hypoxia process.
基金supported by grants from Science and Technology Planning Project of Shenzhen [No.200703079]
文摘Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wastewater purification processes do not effectively remove many chemical contaminants,
文摘In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of whole membrane water treatment technology in environmental protection.It is hoped that this analysis can be helpful for the rational application of the whole membrane water treatment technology and the improvement of environmental protection quality.
基金the Czech Science Foundation(Project No.104/08/02290)the Czech Ministry of Industry and Trade(Project CZ.1.03/5.1.00/12.00010)the Czech Ministry of Education(Project MSM0021622411)
文摘This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O_2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.
文摘Objective To investigate the feasibility and surgical effects of posterior articular process approach for the treatment of L1-L3 lumbar disc herniation.Methods A retrospective study,of17patients with upper lumbar intervertebml disc
文摘According to different mechanism of microbial degradation of organics, this article divided the treatment processes of garbage landfill into four kinds, analyzed each kind of the treatment leachate process and presented a better improved process. (Author abstract) 4 Refs.
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2021QE227)the Natural Science Foundation of Shandong Province,China(No.ZR2021QE272)+1 种基金the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ES202120)the Taishan Scholars Program of Shandong Province,China(No.tsqn201812091)。
文摘It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotoxicity reduction of industrial wastewater are still limited.In this study,the toxic organics removal and biotoxicity reduction of coal chemical wastewater(CCW)along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced(BE)process-anoxic/oxic(A/O)process-advanced treatment process was evaluated.This process performed great removal efficiency of COD,total phenol,NH_(4)^(+)-N and total nitrogen.And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity,genotixicity and oxidative damage.The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila.But the acute biotoxicity was significantly reduced in BE-A/O process.And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment.The polar organics in CCW were identified as the main biotoxicity contributors.Phenols were positively correlated with acute biotoxicity,while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity.Although the biotoxicity was effectively reduced in the novel full-scale treatment process,the effluent still performed potential biotoxicity,which need to be further explored in order to reduce environmental risk.
基金the National Natural Science Foundation of China (Nos.52075362 and 51975399)the Central Government Guides Local Foundation for Science and Technology Development,China (Nos.YDZJSX2022A020 and YDZJSX2022B004).
文摘Thermal Barrier Coatings(TBCs)technology is key to improving the service temperature and the productivity of aircraft engines.The performance and failure life of TBCs are strongly influenced by surface integrity and microstructure.Therefore,recognizing failure mechanisms and developing effective surface treatment processes are crucial for further improving the reliability and durability of TBCs.This paper explains the primary reasons for TBC failure,emphasizing on how integrity of surface and interface influences interfacial oxidation,high-temperature erosion,and Calcium-Magnesium-Alumina-Silicate(CMAS)corrosion.Furthermore,this paper completely and rigorously evaluates the research status of TBCs surface treatment processes,including the characteristics and effects of various processes,and describes the requirements and goals of pretreatment and post-treatment.In addition,a potential direction for the development and application of TBCs surface treatment is suggested.
基金supported by the Wuhan Science and Technology Planning Project(No.2018060401011313).
文摘Emerging pollutants,such as antibiotics and antibiotic-resistance genes,are becoming increasingly important sources of safety and health concerns.Drinking water safety,which is closely related to human health,should receive more attention than natural water body safety.However,minimal research has been performed on the efficacy of existing treatment processes in water treatment plants for the removal of antibiotics and antibiotic resistance genes.To address this research gap,this study detected and analyzed six main antibiotics and nine antibiotic resistance genes in the treatment processes of two drinking water plants in Wuhan.Samples were collected over three months and then detected and analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry and fluorescence quantitation.The total concentrations of antibiotics and antibiotic resistance genes in the influent water of the two water plants were characterized as December>March>June.The precipitation and filtration processes of the Zou Maling Water Plant and Yu Shidun Water Plant successfully removed the antibiotics.The ozone-activated carbon process increased the removal rate of most antibiotics to 100%.However,a large amount of antibiotic resistance gene residues remained in the effluents of the two water plants.The experiments demonstrated that the existing ozone-activated carbon processes could not effectively remove antibiotic resistance genes.This study provides a reference for the optimization of drinking water treatment processes for antibiotics and antibiotic resistance gene removal.
基金the National Natural Science Foundation of China (No.50678139)
文摘Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
基金the Korea Research Foundation Grant Funded by the Korean Government (MOEHRD) (KRF-2007-331-D00089) Funded by Seoul Development Institute (CS070160)
文摘A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.
基金Project(2012AA06A202)supported by Hi-tech Research and Development Project of China
文摘The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.
文摘In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.