期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Microstructure and mechanical properties of Co-28Cr-6Mo-0.22C investment castings by current solution treatment
1
作者 Ze-yu Dan Jun Liu +4 位作者 Jian-lei Zhang Yan-hua Li Yuan-xin Deng Yun-hu Zhang Chang-jiang Song 《China Foundry》 SCIE EI CAS CSCD 2024年第4期369-378,共10页
This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s... This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods. 展开更多
关键词 CoCrMo alloy investment castings current solution treatment microstructure mechanical property CARBIDE
下载PDF
Influence of heat treatments on incipient melting structures of DD5 nickel-based single crystal superalloy
2
作者 Zhi-hong Jia Chen-yang Li +4 位作者 Wen-xiang Jing Xiang-feng Liang Ze-kun Zhang Jia-le Xiao Yu-tao Zhao 《China Foundry》 SCIE CAS CSCD 2023年第5期395-402,共8页
The evolution of microstructure and formation mechanism of incipient melting microstructure of DD5 single crystal superalloy during solution heat treatment were studied by scanning electron microscopy(SEM),electron pr... The evolution of microstructure and formation mechanism of incipient melting microstructure of DD5 single crystal superalloy during solution heat treatment were studied by scanning electron microscopy(SEM),electron probe microanalysis(EPMA),and energy dispersive spectroscopy(EDS).The solidus and liquidus of single crystal alloy were obtained by differential scanning calorimetry(DSC).Results show that the mosaic-like eutectic and fan-like eutectic are dissolved at first,and the coarseγ'phase is dissolved later during the solution heat treatment of 1,390°C/2 h+1,310°C/4 h+1,320°C/10 h+air cooling(AC).The composition segregations of Al,Ta,W and Re are 0.99,0.96,1.04 and 1.16,respectively,which close to 1.The incipient melting is caused by the low local temperature of the alloy,and the micropore region with a lower melting point is the preferred position for incipient melting. 展开更多
关键词 SUPERALLOY solution heat treatment EUTECTIC composition segregation incipient melting
下载PDF
Temperature variation and solution treatment of high strength AA7050 被引量:9
3
作者 李培跃 熊柏青 +1 位作者 张永安 李志辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期546-554,共9页
Temperature variation and solution treatment of high strength aluminum alloy were investigated with temperature data acquisition system,microstructural observation,mechanical properties test,electrical conductivity me... Temperature variation and solution treatment of high strength aluminum alloy were investigated with temperature data acquisition system,microstructural observation,mechanical properties test,electrical conductivity measurement and differential scanning calorimetry(DSC) analysis.Specimens with two dimensions were employed in the experiment.The results indicate that the specimens with large size undergo low solution temperature and short time,giving rise to the reduction of hardening precipitates.The optimized solution treatments for specimens with dimensions of 25 mm×25 mm×2.5 mm and 70 mm×60 mm×20 mm are(480 ℃,30 min) and(480 ℃,90 min),respectively.The densities of GP zones and η' phases of the small specimen are higher than those of the large specimen,which is consistent with the properties of the alloys. 展开更多
关键词 aluminum alloy specimen size solution treatment heating rate hardening precipitate
下载PDF
Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy 被引量:6
4
作者 江树勇 赵亚楠 +2 位作者 张艳秋 胡励 梁玉龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3658-3667,共10页
As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K... As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K and 873 K, respectively. The influence of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi alloy was systematically investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and compression test. Solution treatment contributes to eliminating the Ti2Ni phase in the as-received NiTi sample, in which the TiC phase is unable to be removed. Solution treatment leads to ordered domain of atomic arrangement in NiTi alloy. In all the aged NiTi samples, the Ni4Ti3 precipitates, the R phase and the B2 austenite coexist in the NiTi matrix at room temperature, while the martensitic twins can be observed in the NiTi samples aged at 873 K. In the NiTi samples aged at 573 and 723 K, the fine and dense Ni4Ti3 precipitates distribute uniformly in the NiTi matrix, and thus they are coherent with the B2 matrix. However, in the NiTi sample aged at 873 K, the Ni4Ti3 precipitates exhibit the very inhomogeneous size, and they are coherent, semi-coherent and incoherent with the B2 matrix. In the case of aging at 723 K, the NiTi sample exhibits the maximum yield strength, where the fine and homogeneous Ni4Ti3 precipitates act as the effective obstacles against the dislocation motion, which results in the maximum critical resolved shear stress for dislocation slip. 展开更多
关键词 NiTi alloy shape memory alloy microstructural evolution mechanical properties solution treatment AGING
下载PDF
Effects of cooling rate on solution heat treatment of as-cast A356 alloy 被引量:13
5
作者 杨长林 李远兵 +2 位作者 党波 吕贺宾 刘峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3189-3196,共8页
The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Th... The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen. 展开更多
关键词 A356 aluminum alloy solution heat treatment eutectic silicon cooling rate
下载PDF
Microstructure and properties of Cu-2.3Fe-0.03P alloy during thermomechanical treatments 被引量:4
6
作者 董琦祎 申镭诺 +4 位作者 汪明朴 贾延琳 李周 曹峰 陈畅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1551-1558,共8页
A short process without solution treatment was developed to manufacture Cu-2.3Fe-0.03 P alloy strips. After hot rolling-quenching and cold rolling with 80% reduction, the alloy exhibited excellent resistance to recrys... A short process without solution treatment was developed to manufacture Cu-2.3Fe-0.03 P alloy strips. After hot rolling-quenching and cold rolling with 80% reduction, the alloy exhibited excellent resistance to recrystallization softening. The hardness and electrical conductivity of Cu-Fe-P alloy under different thermomechanical treatments were measured by hardness tester and double bridge tester, respectively, and the microstructure of the alloy was examined by optical microscopy and transmission electron microscopy. The results show that the finished product of Cu-2.3Fe-0.03 P alloy was strengthened by work hardening, while the Fe precipitates with the size of about 25 nm stabilized the cold rolled structure. The conductivity decreased during cold rolling, especially for the pre-aged specimens, because the fine precipitates with the size smaller than 5 nm re-dissolved easily into the matrix. A Cu-Fe-P alloy with an electrical conductivity of 66% IACS and a hardness of HV 134 can be gained. 展开更多
关键词 Cu-Fe-P alloy solution treatment hot rolling precipitation RECRYSTALLIZATION
下载PDF
Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy 被引量:7
7
作者 党波 刘丛丛 +2 位作者 刘峰 刘颖卓 李远兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期634-642,共9页
For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different ... For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost. 展开更多
关键词 A356 Al alloy solution heat treatment cooling rate eutectic silicon MODIFICATION
下载PDF
Microstructure evolution of Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment 被引量:5
8
作者 王朝辉 杜文博 +2 位作者 王旭东 刘轲 李淑波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期593-598,共6页
Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM... Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration. 展开更多
关键词 Mg-Gd-Er-Zr alloy microstructure evolution solution solid treatment eutectic phase
下载PDF
Influence of solution treatment on microstructure and properties of in-situ Mg_2Si/AZ91D composites 被引量:4
9
作者 彭蕾 陈刚 +2 位作者 赵玉涛 黄康 邵阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2365-2371,共7页
The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese scr... The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface. 展开更多
关键词 Mg2Si/AZ91D composites solution treatment spheroidized Mg2Si particle interface tension
下载PDF
Effects of solution treatment on microstructure and mechanical properties of Al-9.0Zn-2.8Mg-2.5Cu-0.12Zr-0.03Sc alloy 被引量:1
10
作者 王高松 赵志浩 +1 位作者 张翼航 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2537-2542,共6页
Effects of additions minor contents of 0.03%Sc and 0.12%Zr and solution treatment on microstructure and mechanical properties of Al-9.0Zn-2.8Mg-2.5Cu alloy were studied by metallographic microscopy, differential therm... Effects of additions minor contents of 0.03%Sc and 0.12%Zr and solution treatment on microstructure and mechanical properties of Al-9.0Zn-2.8Mg-2.5Cu alloy were studied by metallographic microscopy, differential thermal analysis (DSC) and transmission electron microscopy (TEM), in order to obtain high-performance Al alloys. The minor additions of Sc (less than 0.1%) were carried out. The results show that with the additions of 0.03% Sc and 0.12% Zr, the petaloid Al3(Sc,Zr) precipitated phases occur in Al-9.0Zn-2.8Mg-2.5Cu alloy, and Al3(Sc,Zr) particles obviously hinder the recrystallization of Al-9.0Zn-2.8Mg-2.5Cu alloy during homogenizing and extruding processes due to their strong pinning effect on dislocation. Multi-stage solution is better than single solution, for it can avoid recrystallization of Al-9.0Zn-2.8Mg-2.5Cu alloy with the minor contents of Sc (less than 0.1%). The proper solution treatment is (420 °C, 3 h)+(465 °C, 2 h) under which Al-9.0Zn-2.8Mg-2.5Cu-0.12Zr-0.03Sc alloy obtains a tensile strength of 777.29 MPa and a elongation of 11.84%. 展开更多
关键词 Al-Zn-Mg-Cu Alloy solution treatment STRUCTURE mechanical properties
下载PDF
Microstructural evolution during solution treatment of thixoformed AM60B Mg alloy 被引量:1
11
作者 黄海军 陈体军 +1 位作者 马颖 郝远 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期745-753,共9页
The microstructural evolution and kinetic characteristics were studied during solution treatment of AM60B Mg alloy prepared by thixoforming. The results indicate that the microstructural evolution includes two stages... The microstructural evolution and kinetic characteristics were studied during solution treatment of AM60B Mg alloy prepared by thixoforming. The results indicate that the microstructural evolution includes two stages: the first stage involves rapid dissolution of eutectic β (Mg 17 Al 12 ) phase, homogenization and coarsening, and the second stage is regarded as normal grain growth consisting of primary α-Mg particles (primary particles) and secondary α-Mg grains (secondary grains). In the first stage, the dissolution completes in a quite short time because the fine β phase can quickly dissolve into the small-sized secondary grains. The homogenization of Al element needs relatively long time. Simultaneously, the microstructure morphology and average grain size obviously change. The first stage sustains approximately 1 h when it is solutionized at 395 ℃ Comparatively, the second stage needs very long time and the microstructure evolves quite slowly as a result of low Al content gradient and thus low diffusivity of Al element after the homogenization of the first stage. The growth model of primary particles obeys power function while that of the secondary grains follows the traditional growth equation in the first stage. In the second stage, both of the primary particles and secondary grains behave a same model controlled by diffusion along grain boundaries and through crystal lattice. 展开更多
关键词 AM60B Mg alloy THIXOFORMING solution heat treatment microstructure kinetics
下载PDF
Effects of on-line solution and off-line heat treatment on microstructure and hardness of die-cast AZ91D alloy 被引量:1
12
作者 徐玉磊 张奎 +3 位作者 李兴刚 雷健 袁海波 刘正 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2652-2658,共7页
The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through... The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced. 展开更多
关键词 die-cast magnesium alloy AZ91D alloy on-line solution off-line solution treatment aging treatment β-Al12Mg17 phases microstructure refinement precipitation hardening
下载PDF
Effect of two-step solid solution on microstructure andδphase precipitation of Inconel 718 alloy
13
作者 Enyu Liu Qingshuang Ma +5 位作者 Xintong Li Aoxue Gao Jing Bai Liming Yu Qiuzhi Gao Huijun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2199-2207,共9页
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s... Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84. 展开更多
关键词 Inconel 718 alloy two-step solid solution treatment δphase γ″-δtransformation
下载PDF
Heat treatment of 7xxx series aluminium alloys—Some recent developments 被引量:84
14
作者 Paul A.ROMETSCH Yong ZHANG Steven KNIGHT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2003-2017,共15页
The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from composi... The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed. 展开更多
关键词 7xxx aluminium alloys AL-ZN-MG-CU HOMOGENISATION solution treatment quenching retrogression and re-ageing strength corrosion
下载PDF
Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment 被引量:25
15
作者 Xiu-liang ZOU Hong YAN Xiao-hui CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第10期2146-2155,共10页
The effects of solution treatment on the evolution of the second phases and mechanical properties of7075Al alloy werestudied with scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differentia... The effects of solution treatment on the evolution of the second phases and mechanical properties of7075Al alloy werestudied with scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential scanning calorimetry(DSC),hardness and tensile tests.The results show that Mg(Zn,Cu,Al)2phases gradually dissolve into the matrix,yet the size andmorphology of Al7Cu2Fe phase exhibit no change with the increase of the solution treatment temperature and time due to its highmelting point.When the solution treatment temperature and time continue to increase,the formation of coarse black Mg2Si particlesoccurs.Compared to the as-cast alloy,the microhardness,tensile strength,and elongation of the sample under solution heat treatmentat460°C for5h are increased by55.1%,40.9%and109.1%,respectively.This is because the eutectic Mg(Zn,Cu,Al)2phases almostcompletely dissolve and basically no coarse black Mg2Si particles are formed. 展开更多
关键词 solution treatment microstructure evolution second phases mechanical properties 7075 Al alloy
下载PDF
Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al-Cu alloy 被引量:14
16
作者 Jae-Ho JANG Dae-Geun NAM +1 位作者 Yong-Ho PARK Ik-Min PARK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期631-635,共5页
In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the stand... In order to achieve good mechanical properties of Al-Cu alloys such as high strength and good toughness,precipitation hardening and artificial aging treatment were applied.As defined by the T6 heat treatment,the standard artificial aging treatment for Al-Cu alloy followed heat treatments of solution treatment at 510-530 ℃ for 2 h,quenching in water at 60 ℃ and then artificial aging at 160-190 ℃ for 2-8 h.The effects of solution treatment and artificial aging on the microstructure and mechanical properties of Al-Cu alloy were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM) and tensile test.The results of solution treatment indicate that the mechanical properties of Al-Cu alloy increase and then decrease with the increase of solution temperature.This is because the residual phases dissolve gradually into the matrix,and the fraction of the precipitation and the size of the re-crystallized grain increased.Compared to the solution temperature,the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu alloy.The artificial aging treatments were conducted at 160-180 ℃ for 2-8 h.The results show that the ultimate tensile strength can be obtained at 180 ℃ for 8 h.Ultimate tensile strength increased with increasing time or temperature.Yield strength was found as the same as the ultimate tensile strength result. 展开更多
关键词 Al-Cu alloy solid solution treatment artificial aging MICROSTRUCTURE mechanical property
下载PDF
Effects of heat treatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy 被引量:18
17
作者 高岩 王渠东 +3 位作者 顾金海 赵阳 童炎 Junya Kaneda 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期298-302,共5页
Microstructure and mechanical properties of Mg-15wt.%Gd-5 wt.%Y-0.5wt.% Zr alloy were investigated in a series of conditions. The eutectic was dissolved into the matrix and there was no evident grain growth after soln... Microstructure and mechanical properties of Mg-15wt.%Gd-5 wt.%Y-0.5wt.% Zr alloy were investigated in a series of conditions. The eutectic was dissolved into the matrix and there was no evident grain growth after solntionized at 525 ℃ for 12 h. The evolution of the phase constituents from as-cast to cast-T4 was as follows: α-Mg solid solution+Mg5(Gd,Y) entectic compound→α-Mg solid solution+ spheroidized Mg5(Gd, Y) phase→α-Mg supersaturated solid solution+cuboid-shaped compound (Mg2Y3Gd2). And the precipitation sequences of Mg-15Gd-5Y-0.5Zr alloy were observed, according to the hardness response to isothermal ageing at 225-300 ℃ for 0-128 h. 展开更多
关键词 Mg-Gd-Y-Zr alloys solution heat treatment MICROSTRUCTURE mechanical properties rare earths
下载PDF
Effects of single and multi-stage solid solution treatments on microstructure and properties of as-extruded AA7055 helical profile 被引量:11
18
作者 Cun-sheng ZHANG Zhao-gang ZHANG +3 位作者 Ming-fu LIU En-cheng BAO Liang CHEN Guo-qun ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期1885-1901,共17页
The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corro... The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055. 展开更多
关键词 7055 aluminum alloy extruded profile solid solution treatment mechanical properties corrosion resistance
下载PDF
Microstructure evolution of modified die-cast AlSi10MnMg alloy during solution treatment and its effect on mechanical properties 被引量:9
19
作者 Zi-hao YUAN Zhi-peng GUO Shou-mei XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期919-930,共12页
To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studie... To optimize the solution treatment process of a modified high-pressure die-cast AlSi10MnMg alloy, the influence of the solution treatment on the microstructure, mechanical properties and fracture mechanisms was studied using OM, SEM, EBSD and tensile test. The experimental results suggest that the solution treatment could be completed in a shorter time at a temperature much lower than the conventional practice. Surface blistering could be avoided and substantial strengthening effect could be achieved in the following aging process. Prolonging solution treatment time and elevating solution temperature would be meaningless or even harmful. The rapid evolution of eutectic silicon during solution treatment, especially at the early stage, affected the way of interaction among α-Al grains during plastic deformation, and changed the ultimate mechanical properties and fracture mode. 展开更多
关键词 AlSi10MnMg alloy die casting solution treatment microstructure evolution mechanical properties process optimization
下载PDF
Effect of solution treatment time on plasticity and ductile fracture of 7075 aluminum alloy sheet in hot stamping process 被引量:7
20
作者 Hui-cheng GENG Yi-lin WANG +2 位作者 Bin ZHU Zi-jian WANG Yi-sheng ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3516-3533,共18页
The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the ho... The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size. 展开更多
关键词 7075 aluminum alloy hot stamping solution treatment time ANISOTROPY ductile fracture
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部