In the present electricity market, where renewable energy power plants have been included in the power systems, there is a lot of unpredictability in the demand and generation. There are many conventional and evolutio...In the present electricity market, where renewable energy power plants have been included in the power systems, there is a lot of unpredictability in the demand and generation. There are many conventional and evolutionary programming techniques used for solving the unit commitment (UC) problem. Dynamic programming (DP) is a conventional algorithm used to solve the deterministic problem. In this paper DP is used to solve the stochastic model of UC problem. The stochastic modeling for load and generation side has been formulated using an approximate state decision approach. The programs were developed in a MATLAB environment and were exten- sively tested for a four-unit eight-hour system. The results obtained from these techniques were validated with the available literature and outcome was good. The commitment is in such a way that the total cost is minimal. The novelty of this paper lies in the fact that DP is used for solving the stochastic UC problem.展开更多
为了解决交通高峰时段城市区域路网过大的交通需求引起的路网通行效率下降以及区域内部交通流分布的异质性产生的道路资源浪费等问题.本文提出了基于区域路网固有属性宏观基本图(Macroscopic fundamental diagram,MFD)的过饱和区域控制...为了解决交通高峰时段城市区域路网过大的交通需求引起的路网通行效率下降以及区域内部交通流分布的异质性产生的道路资源浪费等问题.本文提出了基于区域路网固有属性宏观基本图(Macroscopic fundamental diagram,MFD)的过饱和区域控制优化模型,建立了边界控制信号和内部控制信号目标函数的双层规划优化,进一步设计了基于BP(Back propagation)神经网络的自适应动态规划(Adaptive dynamic programming,ADP)模型,对建立的双层规划区域交通信号进行求解,实例仿真结果验证了本文方法的有效性.通过本文的研究分析,对城市区域交通的需求管控、拥堵政策制定等城市区域交通管理具有一定的指导意义.展开更多
文摘In the present electricity market, where renewable energy power plants have been included in the power systems, there is a lot of unpredictability in the demand and generation. There are many conventional and evolutionary programming techniques used for solving the unit commitment (UC) problem. Dynamic programming (DP) is a conventional algorithm used to solve the deterministic problem. In this paper DP is used to solve the stochastic model of UC problem. The stochastic modeling for load and generation side has been formulated using an approximate state decision approach. The programs were developed in a MATLAB environment and were exten- sively tested for a four-unit eight-hour system. The results obtained from these techniques were validated with the available literature and outcome was good. The commitment is in such a way that the total cost is minimal. The novelty of this paper lies in the fact that DP is used for solving the stochastic UC problem.