The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, whe...The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.展开更多
A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quas...A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G −x?is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.展开更多
A dominating tree T of a graph G is a subtree of G which contains at least one neighbor of each vertex of G.The minimum dominating tree problem is to find a dominating tree of G with minimum number of vertices,which i...A dominating tree T of a graph G is a subtree of G which contains at least one neighbor of each vertex of G.The minimum dominating tree problem is to find a dominating tree of G with minimum number of vertices,which is an NP-hard problem.This paper studies some polynomially solvable cases,including interval graphs,Halin graphs,special outer-planar graphs and others.展开更多
A k-tree of a connected graph G is a spanning tree with maximum degree at most k. The rupture degree for a connected graph G is defined by , where and , respectively, denote the order of the largest component and numb...A k-tree of a connected graph G is a spanning tree with maximum degree at most k. The rupture degree for a connected graph G is defined by , where and , respectively, denote the order of the largest component and number of components in . In this paper, we show that for a connected graph G, if for any cut-set , then G has a k-tree.展开更多
In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are ...In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.展开更多
Let T(G)be the tree graph of a simple graph G.It is proved that ifT and T′are two vertices of T(G)such that d_T(G)(T)(?)d_T(G}(T′),then there ared_T(G)(T) internally disjoint paths in T(G) joining T and T′.
In this paper, the concepts of tree chromatic numbers and uniquely tree colorable graphs are introduced. After discussion some fundamental properties, three necessary conditions for a simple graph to be uniquely tr...In this paper, the concepts of tree chromatic numbers and uniquely tree colorable graphs are introduced. After discussion some fundamental properties, three necessary conditions for a simple graph to be uniquely tree colorable are given. Moreover, a series of uniquely tree colorable graphs are constructed.展开更多
The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that ther...The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.展开更多
Given a graph G, a subgraph C is called a clique of G if C is a complete subgraph of G maximal under inclusion and |C| ≥2. A clique-transversal set S of G is a set of vertices of G such that S meets all cliques of ...Given a graph G, a subgraph C is called a clique of G if C is a complete subgraph of G maximal under inclusion and |C| ≥2. A clique-transversal set S of G is a set of vertices of G such that S meets all cliques of G. The clique-transversal number, denoted as τC(G), is the minimum cardinality of a clique-transversal set in G. The clique-graph of G, denoted as K(G), is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques in G have nonempty intersection. Let F be a class of graphs G such that F = {G| K(G) is a tree}. In this paper the graphs in F having independent clique-transversal sets are shown and thus τC(G)/|G| ≤ 1/2 for all G ∈F.展开更多
Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design...Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.展开更多
基于Petersen图,提出了Binary Tree Petersen的网络结构,并对其特性进行了研究,证明了Binary Tree Petersen网络具有正则性以及良好的可扩展性,同时还具有比RP(k)、2-DToms更短的直径和良好的并行能力.另外,还基于Binary Tree P...基于Petersen图,提出了Binary Tree Petersen的网络结构,并对其特性进行了研究,证明了Binary Tree Petersen网络具有正则性以及良好的可扩展性,同时还具有比RP(k)、2-DToms更短的直径和良好的并行能力.另外,还基于Binary Tree Petersen网络分别给出了其上的单播和广播路由算法,证明了通信效率都为2j+4.展开更多
文摘The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.
文摘A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G −x?is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.
文摘A dominating tree T of a graph G is a subtree of G which contains at least one neighbor of each vertex of G.The minimum dominating tree problem is to find a dominating tree of G with minimum number of vertices,which is an NP-hard problem.This paper studies some polynomially solvable cases,including interval graphs,Halin graphs,special outer-planar graphs and others.
文摘A k-tree of a connected graph G is a spanning tree with maximum degree at most k. The rupture degree for a connected graph G is defined by , where and , respectively, denote the order of the largest component and number of components in . In this paper, we show that for a connected graph G, if for any cut-set , then G has a k-tree.
文摘In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.
文摘Let T(G)be the tree graph of a simple graph G.It is proved that ifT and T′are two vertices of T(G)such that d_T(G)(T)(?)d_T(G}(T′),then there ared_T(G)(T) internally disjoint paths in T(G) joining T and T′.
文摘In this paper, the concepts of tree chromatic numbers and uniquely tree colorable graphs are introduced. After discussion some fundamental properties, three necessary conditions for a simple graph to be uniquely tree colorable are given. Moreover, a series of uniquely tree colorable graphs are constructed.
文摘The first problem considered in this article reads: is it possible to find upper estimates for the spanning tree congestion in bipartite graphs, which are better than those for general graphs? It is proved that there exists a bipartite version of the known graph with spanning tree congestion of order n3/2, where n is the number of vertices. The second problem is to estimate spanning tree congestion of random graphs. It is proved that the standard model of random graphs cannot be used to find graphs whose spanning tree congestion has order greater than n3/2.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571117), and the Development Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04)
文摘Given a graph G, a subgraph C is called a clique of G if C is a complete subgraph of G maximal under inclusion and |C| ≥2. A clique-transversal set S of G is a set of vertices of G such that S meets all cliques of G. The clique-transversal number, denoted as τC(G), is the minimum cardinality of a clique-transversal set in G. The clique-graph of G, denoted as K(G), is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques in G have nonempty intersection. Let F be a class of graphs G such that F = {G| K(G) is a tree}. In this paper the graphs in F having independent clique-transversal sets are shown and thus τC(G)/|G| ≤ 1/2 for all G ∈F.
文摘Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.
文摘基于Petersen图,提出了Binary Tree Petersen的网络结构,并对其特性进行了研究,证明了Binary Tree Petersen网络具有正则性以及良好的可扩展性,同时还具有比RP(k)、2-DToms更短的直径和良好的并行能力.另外,还基于Binary Tree Petersen网络分别给出了其上的单播和广播路由算法,证明了通信效率都为2j+4.