针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(...针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(CPD)的混合配准算法(Intrinsic Shape-Coherent Point Drift,IS-CPD),以获取单棵树木的完整点云数据;最后,采用Laplace收缩点集和拓扑细化相结合的方法提取骨架,并通过柱体构建枝干模型,实现骨架三维重构。试验结果表明,相比传统CPD算法,研究设计的配准方案精度和执行速度分别提高50%和95.8%,最终重构误差不超过2.48%。研究结果证明可有效地重构单棵树木的三维骨架,效果接近树木原型,为构建林木数字孪生环境和林业资源管理提供参考。展开更多
文摘针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(CPD)的混合配准算法(Intrinsic Shape-Coherent Point Drift,IS-CPD),以获取单棵树木的完整点云数据;最后,采用Laplace收缩点集和拓扑细化相结合的方法提取骨架,并通过柱体构建枝干模型,实现骨架三维重构。试验结果表明,相比传统CPD算法,研究设计的配准方案精度和执行速度分别提高50%和95.8%,最终重构误差不超过2.48%。研究结果证明可有效地重构单棵树木的三维骨架,效果接近树木原型,为构建林木数字孪生环境和林业资源管理提供参考。