This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and order...This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.展开更多
K-th number query是计算机算法中的一个基础问题,被广泛作为很多算法实现的重要步骤。对该问题进行了深入研究,并找到了单询问渐近时间复杂度最优的算法。目前一般对于多询问的K-th number query问题使用平衡二叉树解决,询问的时间复...K-th number query是计算机算法中的一个基础问题,被广泛作为很多算法实现的重要步骤。对该问题进行了深入研究,并找到了单询问渐近时间复杂度最优的算法。目前一般对于多询问的K-th number query问题使用平衡二叉树解决,询问的时间复杂度为O(lbn)。但该算法实现比较复杂,并且常系数较大,提出了基于Bit Indexed Tree数据结构的算法解决,在同等时间复杂度的前提下,实现简单,隐含的常系数很小。最后进行了实验测试,分析显示该新算法不论在时间上还是空间上都优于现有的算法。展开更多
文摘This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.
文摘K-th number query是计算机算法中的一个基础问题,被广泛作为很多算法实现的重要步骤。对该问题进行了深入研究,并找到了单询问渐近时间复杂度最优的算法。目前一般对于多询问的K-th number query问题使用平衡二叉树解决,询问的时间复杂度为O(lbn)。但该算法实现比较复杂,并且常系数较大,提出了基于Bit Indexed Tree数据结构的算法解决,在同等时间复杂度的前提下,实现简单,隐含的常系数很小。最后进行了实验测试,分析显示该新算法不论在时间上还是空间上都优于现有的算法。