期刊文献+
共找到834篇文章
< 1 2 42 >
每页显示 20 50 100
The Channel Branches & Network Vessels on the Tianhui Lacquered Meridian Figurine——Taking the Heart-Regulated Channel as an Example 被引量:1
1
作者 ZHOU Qi Lena Springer 《Chinese Medicine and Culture》 2024年第3期222-232,共11页
Along with the surge of unearthed medical literature and cultural relics in recent years,a network of channels in the system of medical conduit vessels(meridians) during the early Western Han dynasty has become much c... Along with the surge of unearthed medical literature and cultural relics in recent years,a network of channels in the system of medical conduit vessels(meridians) during the early Western Han dynasty has become much clearer gradually.In it,the increasing number of channel branches,network vessels and needle insertion holes(acupoints) is an important feature of the development of channel medicine during the Western Han dynasty.This is not only a reflection of the expanding requirements of the theoretical system of the main trunk channels and other vessels,but also an inevitable result of the continuous enrichment and accumulation of clinical experience.This article integrates the information about channel branches,network vessels,inscriptions,dots and further relics on the Tianhui(天回) Lacquered Meridian Figurine to compare the unearthed literature of the channel genre with the transmitted classical literature about acupuncture.The “Heart-Regulated Channel” in Medical Manuscripts on Bamboo Slips from Tianhui(《天回医简》) serves as an example to explain the occurrence,development and changes of the channel branches and network vessels in the early system of medical channels. 展开更多
关键词 Tianhui Lacquered Meridian Figurine(天回髹漆经脉人像) Tianhui Medicine Slips Heart-Regulated Channel(心主之脉) Channel branches network channels
下载PDF
DCFNet:An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation
2
作者 Chengzhang Zhu Renmao Zhang +5 位作者 Yalong Xiao Beiji Zou Xian Chai Zhangzheng Yang Rong Hu Xuanchu Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1103-1128,共26页
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans... Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance. 展开更多
关键词 Convolutional neural networks Swin Transformer dual branch medical image segmentation feature cross fusion
下载PDF
Analysis of thermal conductivity in tree-like branched networks
3
作者 寇建龙 陆杭军 +1 位作者 吴锋民 许友生 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1553-1559,共7页
Asymmetric tree-like branched networks are explored by geometric algorithms. Based on the network, an analysis of the thermal conductivity is presented. The relationship between effective thermal conductivity and geom... Asymmetric tree-like branched networks are explored by geometric algorithms. Based on the network, an analysis of the thermal conductivity is presented. The relationship between effective thermal conductivity and geometric structures is obtained by using the thermal-electrical analogy technique. In all studied cases, a clear behaviour is observed, where angle (δ,θ) among parent branching extended lines, branches and parameter of the geometric structures have stronger effects on the effective thermal conductivity. When the angle δ is fixed, the optical diameter ratio β+ is dependent on angle θ. Moreover, γand m are not related to β*. The longer the branch is, the smaller the effective thermal conductivity will be. It is also found that when the angle θ〈δ2, the higher the iteration m is, the lower the thermal conductivity will be and it tends to zero, otherwise, it is bigger than zero. When the diameter ratio β1 〈 0.707 and angle δ is bigger, the optimal k of the perfect ratio increases with the increase of the angle δ; when β1 〉 0.707, the optimal k decreases. In addition, the effective thermal conductivity is always less than that of single channel material. The present results also show that the effective thermal conductivity of the asymmetric tree-like branched networks does not obey Murray's law. 展开更多
关键词 effective thermal conductivity asymmetric tree-like branched networks geometric parameters
下载PDF
Stability of weighted spectral distribution in a pseudo tree-like network model
4
作者 焦波 聂原平 +4 位作者 黄赪东 杜静 郭荣华 黄飞 石建迈 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期479-486,共8页
The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distri... The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system. 展开更多
关键词 weighted spectral distribution pseudo tree-like model deterministic network scale-free and small-world network
下载PDF
IMPROVED MODE-MATCHING AND NETWORK ANALYSIS OF E-PLANE WAVEGUIDE BRANCH DIRECTIONAL COUPLERS
5
作者 徐善驾 王峰 《Journal of Electronics(China)》 1995年第4期378-383,共6页
The E-plane waveguide branch directional couplers are analyzed by a method which combines the multimode network theory with rigorous mode-matching approach. The electromagnetic field components are expanded by the sup... The E-plane waveguide branch directional couplers are analyzed by a method which combines the multimode network theory with rigorous mode-matching approach. The electromagnetic field components are expanded by the superposition of LSEx modes rather than TE and TM modes in the mode-matching procedure. Meanwhile, the electromagnetic problem is transferred into the network problem through the mode-matching treatment. It is shown that the present method has the advantages of simplicity and less computation without affecting the accuracy of the calculation. 展开更多
关键词 E-PLANE WAVEGUIDE branch Directional COUPLER MODE-MATCHING MULTIMODE network THEORY
下载PDF
THE ANALYSIS METHOD OF THE SETS OF BRANCHES BASED ON INDEPENDENT LOOPS IN THE ELECTRIC NETWORK
6
作者 温书田 罗涛 《Journal of Electronics(China)》 1989年第3期193-202,共10页
The matrix D describing relations of the loops to the nodes in the graph and also the setsof branches based on the independent loops and their matrix Q are defined.The theorem in whichthe product of the loop-node matr... The matrix D describing relations of the loops to the nodes in the graph and also the setsof branches based on the independent loops and their matrix Q are defined.The theorem in whichthe product of the loop-node matrix D multiplied by the incidence matrix A<sub>a</sub> is equal to matrix Qis put forward and proved.The admittance matrix Y<sub>lc</sub> of the sets of the branches is defined and it isassumed that the vector V<sub>lc</sub> of voltage of the sets of branches to be a calculative quantity.The equa-tion of the sets of branches is derived and the analysis method of the sets of branches based on theindependent loops in the electric network is presented. 展开更多
关键词 ELECTRIC network MATRIX Loop branch-set Loop-node MATRIX
下载PDF
含逆变型分布式电源和分支负荷的配电网自适应电流差动保护 被引量:1
7
作者 王钢 冯婧桐 李杰 《电网技术》 EI CSCD 北大核心 2024年第6期2593-2602,I0099-I0102,共14页
电流差动保护具有良好的选择性和灵敏性。但是,逆变型分布式电源(inverter-interfaced distributed generator,IIDG)和分支负荷接入改变了配电网的故障特性,现有配电网的电流差动保护面临拒动或误动的风险。为解决以上问题,该文在计及P/... 电流差动保护具有良好的选择性和灵敏性。但是,逆变型分布式电源(inverter-interfaced distributed generator,IIDG)和分支负荷接入改变了配电网的故障特性,现有配电网的电流差动保护面临拒动或误动的风险。为解决以上问题,该文在计及P/Q控制的IIDG和分支负荷的故障等值建模基础上,从故障点、IIDG和分支负荷的相对位置出发,挖掘配电网线路两端正序电流差的幅值特征以及正序电流故障分量的相位特征。在此基础上,提出一种正序电流幅值与故障分量相角阈值配合的双比例制动系数自适应差动保护方案,并且利用幅相平面分析所提保护判据的可靠性和灵敏性。最后通过PSCAD/EMTDC验证了所提保护方案的有效性,仿真结果表明该方案适应不同故障类型、位置和过渡电阻,且不受IIDG以及分支负荷接入的影响。 展开更多
关键词 配电网 逆变型分布式电源 分支负荷 自适应电流差动保护 正序故障分量
下载PDF
一种基于双分支注意力神经网络的皮肤癌检测框架
8
作者 王玉峰 成昊沅 +2 位作者 万承北 张博 石爱菊 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第2期153-161,共9页
皮肤癌是一种主要的癌症,在过去几十年中快速增长,早期发现可以极大提高治愈率。近年来,基于皮肤镜图像利用深度学习模型(尤其是各种卷积神经网络)对皮肤癌进行识别和分类获得了广泛应用。但是与传统的图像识别分类不同,皮肤病检测任务... 皮肤癌是一种主要的癌症,在过去几十年中快速增长,早期发现可以极大提高治愈率。近年来,基于皮肤镜图像利用深度学习模型(尤其是各种卷积神经网络)对皮肤癌进行识别和分类获得了广泛应用。但是与传统的图像识别分类不同,皮肤病检测任务存在数据不平衡、类间差异性小以及皮损面积占比少等方面的挑战。为此,本研究提出一种基于双分支注意力卷积神经网络(DACNN)皮肤癌分类框架。在数据预处理阶段,根据更细粒度的皮肤病类别,对数据集进行分解,降低数据不平衡程度。从网络结构上,上分支网络利用注意力残差学习(ARL)模块有效提取潜在的病变区域特征,接着利用损伤定位网络(LLN)模块定位病变区域。对其裁剪放大输入由ARL构成的下分支网络,进行局部细节的特征提取,然后结合上下分支网络的特征,进行有效的识别。最后,为了进一步缓解数据不平衡问题,在训练阶段中采用加权损失函数。在包含10015张皮肤镜图像数据集上,对所提出的DACNN模型与几种典型的皮肤病变检测框架进行了实验验证和比较。结果表明,DACNN皮肤癌变检测框架的Sensitivity、Accuracy和F1_score等性能指标分别达到了0.922、0.942和0.933,与已有的递归注意力卷积神经网络模型RACNN相比,以上3个指标分别提升了3.48%、2.95%和3.44%。总之,对于各类图像数不平衡,类间图像差异性小以及皮损面积占比少的皮肤镜图像而言,采用适当的类分解,以及双分支注意力神经网络结构首先对潜在的病变区域进行定位放大,然后进行局部细节的特征提取,能够极大的提高皮肤癌的检测准确度。 展开更多
关键词 皮肤癌 双分支神经网络 注意力机制 数据不平衡
下载PDF
多级暂堵诱导分支缝开启规律
9
作者 孙正龙 刘彦成 +4 位作者 尹虹橙 杨璐 张迎春 高计县 何江 《科学技术与工程》 北大核心 2024年第10期4084-4090,共7页
缝内多级暂堵是提高缝内净压力,激活侧向分支缝,增大侧向改造带宽,提升层内油气动用程度的有效手段之一。研究缝内多级暂堵转向规律对指导优化暂堵方案至关重要,其难点是建立缝内暂堵模拟方法。针对裂缝性超低渗储层,基于等效黏度方法,... 缝内多级暂堵是提高缝内净压力,激活侧向分支缝,增大侧向改造带宽,提升层内油气动用程度的有效手段之一。研究缝内多级暂堵转向规律对指导优化暂堵方案至关重要,其难点是建立缝内暂堵模拟方法。针对裂缝性超低渗储层,基于等效黏度方法,建立了缝内多级暂堵数值模型,系统研究了逼近角、应力差、暂堵次数对分支缝开启的影响规律,研究结果表明:当水平应力差≥5 MPa且逼近角较大(≥60°)时,水力裂缝倾向于穿过天然裂缝,沿当前方向扩展,无法激活天然裂缝;水平应力差≤5 MPa时且逼近角较小(≤30°)时,水力裂缝遇到天然裂缝后能够开启钝角分支;缝内初次暂堵能够有效开启高逼近角下一级分支缝,缝内二次暂堵能够开启二级分支缝;采用缝内多级暂堵能够提高单井最高日产油量至2倍,平均日产油量提升至3倍。本文研究成果对缝内多级暂堵压裂设计奠定了模型和方法基础。 展开更多
关键词 缝网压裂 多级暂堵 分支缝 二次转向
下载PDF
基于轻量化卷积神经网络的纬编针织物组织结构分类
10
作者 胡旭东 汤炜 +4 位作者 曾志发 汝欣 彭来湖 李建强 王博平 《纺织学报》 EI CAS CSCD 北大核心 2024年第5期60-69,共10页
为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,... 为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,修正各个层次特征在通道域和空间域的权重。构建的双分支网络架构能并行提取织物双面的特征信息。在分类阶段,采用了串行策略来融合高维特征向量,以确定纬编针织物组织所属类别。使用准确率、宏精确率、宏召回率以及宏F_(1)评估模型的性能,并统计了参数量和计算复杂度衡量模型的资源消耗。实验结果显示,对于纬编针织物特殊的结构特点,双分支网络架构具有很好的适应性。改进后的模型增强了不同组织间的特征区分度,在受到角度旋转、尺度改变、光照条件变化等干扰下,本文方法的分类准确率可达99.51%,且保持了较小的资源消耗。 展开更多
关键词 纬编针织物 组织结构分类 轻量化卷积神经网络 图像识别 双分支网络 注意力机制
下载PDF
基于双分支特征聚合网络的车辆检测算法
11
作者 吕蒙 毛盛辉 +2 位作者 柴亮 高鹏飞 时蕾 《计算机工程与应用》 CSCD 北大核心 2024年第22期240-250,共11页
车辆目标检测是自动驾驶的重要环节,现有的车辆目标检测算法在特征提取方面没有充分考虑卷积神经网络(convolutional neural network,CNN)和Transformer各自的优缺点,一定程度上限制了网络的整体性能。提出了一种由CNN和Transformer组... 车辆目标检测是自动驾驶的重要环节,现有的车辆目标检测算法在特征提取方面没有充分考虑卷积神经网络(convolutional neural network,CNN)和Transformer各自的优缺点,一定程度上限制了网络的整体性能。提出了一种由CNN和Transformer组成的双分支特征聚合网络。在编码阶段,基于CNN和Transformer各自的优势,构建了双分支主干网络来提取原始图像的特征信息;通过设计的多级别空间注意力模块和双支路特征聚合模块,使两个分支间的特征信息相互引导学习;通过构建的双分支注意力模块来进一步减少深层神经网络中特征信息的丢失。在实验部分通过消融实验和对比实验进一步验证了所提算法的有效性,其相比主流的目标检测算法,在mAP(mean average precision)指标上提升了约3.5%。 展开更多
关键词 车辆目标检测 卷积神经网络(CNN) TRANSFORMER 双分支 引导学习
下载PDF
基于任务解耦的低照度图像增强方法
12
作者 牛玉贞 陈铭铭 +1 位作者 李悦洲 赵铁松 《电子学报》 EI CAS CSCD 北大核心 2024年第1期34-45,共12页
低照度条件下拍摄的照片往往存在亮度低、颜色失真、噪声高、细节退化等多重耦合问题,因此低照度图像增强是一个具有挑战性的任务.现有基于深度学习的低照度图像增强方法通常聚焦于对亮度和色彩的提升,导致增强图像中仍然存在噪声等缺陷... 低照度条件下拍摄的照片往往存在亮度低、颜色失真、噪声高、细节退化等多重耦合问题,因此低照度图像增强是一个具有挑战性的任务.现有基于深度学习的低照度图像增强方法通常聚焦于对亮度和色彩的提升,导致增强图像中仍然存在噪声等缺陷.针对上述问题,本文提出了一种基于任务解耦的低照度图像增强方法,根据低照度图像增强任务对高层和低层特征的不同需求,将该任务解耦为亮度与色彩增强和细节重构两组任务,进而构建双分支低照度图像增强网络模型(Two-Branch Low-light Image Enhancement Network,TBLIEN).其中,亮度与色彩增强分支采用带全局特征的U-Net结构,提取深层语义信息改善亮度与色彩;细节重构分支采用保持原始分辨率的全卷积网络实现细节复原和噪声去除.此外,在细节重构分支中,本文提出一种半双重注意力残差模块,能在保留上下文特征的同时通过空间和通道注意力强化特征,从而实现更精细的细节重构.在合成和真实数据集上的广泛实验表明,本文模型的性能超越了当前先进的低照度图像增强方法,并具有更好的泛化能力,且可适用于水下图像增强等其他图像增强任务. 展开更多
关键词 低照度图像增强 任务解耦 双分支网络模型 对比学习 残差网络
下载PDF
基于双支特征联合映射的端到端图像去雾算法
13
作者 杨燕 陈阳 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期10-19,共10页
针对卷积神经网络去雾算法中模型复杂度高、特征提取性能差等问题,本文提出了一种基于双支特征联合映射的端到端图像去雾算法.首先对大气散射模型进行变形转换,分离出模型中的双支特征;然后根据双支特点设计了两个特征提取网络MPFEM和SP... 针对卷积神经网络去雾算法中模型复杂度高、特征提取性能差等问题,本文提出了一种基于双支特征联合映射的端到端图像去雾算法.首先对大气散射模型进行变形转换,分离出模型中的双支特征;然后根据双支特点设计了两个特征提取网络MPFEM和SPFEM,分别使用两种注意力机制对其输出特征进行加权;最后将提取到的双支特征输入复原模块恢复清晰图像,并对其进行色彩增强得到最终复原效果.在模型训练过程中为避免使用单一损失函数导致纹理细节丢失等问题,采用多尺度结构相似度和平均绝对误差加权作为损失函数.实验表明,本文所提算法网络结构简单,去雾效果明显,复原图像色彩亮度保真,边缘保持性强. 展开更多
关键词 图像去雾 卷积神经网络 双支特征 注意力机制
下载PDF
联合多连接特征编解码与小波池化的轻量级语义分割
14
作者 易清明 王渝 +1 位作者 石敏 骆爱文 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期366-375,共10页
语义分割是当前场景理解领域的基础技术之一。现存的语义分割网络通常结构复杂、参数量大、图像特征信息损失过多和计算效率低。针对以上问题,基于编-解码器框架和离散小波变换,设计了一个联合多连接特征编解码与小波池化的轻量级语义... 语义分割是当前场景理解领域的基础技术之一。现存的语义分割网络通常结构复杂、参数量大、图像特征信息损失过多和计算效率低。针对以上问题,基于编-解码器框架和离散小波变换,设计了一个联合多连接特征编解码与小波池化的轻量级语义分割网络MLWP-Net(Multi-Link Wavelet-Pooled Network),在编码阶段利用多连接策略并结合深度可分离卷积、空洞卷积和通道压缩设计了轻量级特征提取瓶颈结构,并设计了低频混合小波池化操作替代传统的下采样操作,有效降低编码过程造成的信息丢失;在解码阶段,设计了多分支并行空洞卷积解码器以融合多级特征并行实现图像分辨率的恢复。实验结果表明,MLWP-Net仅以0.74 MB的参数量在数据集Cityscapes和CamVid上分别达到74.1%和68.2%mIoU的分割精度,验证了该算法的有效性。 展开更多
关键词 实时语义分割 轻量级神经网络 多连接特征融合 小波池化 多分支空洞卷积
下载PDF
基于双支路卷积网络的步态识别方法
15
作者 王晓路 千王菲 《计算机应用》 CSCD 北大核心 2024年第6期1965-1971,共7页
针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;... 针对步态识别易受拍摄视角、外观变化等影响的问题,提出一种基于双支路卷积网络的步态识别方法。首先,提出随机裁剪随机遮挡的数据增强方法RRDA(Restricted Random Data Augmentation),以扩展外观变化的数据样本,提高模型遮挡的鲁棒性;其次,采用结合注意力机制的两路复合卷积层(C-Conv)提取步态特征,一个分支通过水平金字塔映射(HPM)提取行人外观全局和最具辨识度的信息;另一分支通过多个并行的微动作捕捉模块(MCM)提取短时间的步态时空信息;最后,将两个分支的特征信息相加融合,再通过全连接层实现步态识别。基于平衡样本特征的区分能力和模型的收敛性构造联合损失函数,以加速模型的收敛。在CASIA-B步态数据集上进行实验,所提方法在3种行走状态下的平均识别率分别达到97.40%、93.67%和81.19%,均高于GaitSet方法、CapsNet方法、双流步态方法和GaitPart方法;在正常行走状态下比GaitSet方法的识别准确率提升了1.30个百分点,在携带背包状态下提升了2.87个百分点,在穿着外套状态下提升了10.89个百分点。实验结果表明,所提方法是可行、有效的。 展开更多
关键词 步态识别 双支路卷积网络 注意力机制 金字塔映射 深度学习
下载PDF
双分支结构的多层级三维点云补全
16
作者 邱云飞 王宜帆 《计算机工程与应用》 CSCD 北大核心 2024年第9期272-282,共11页
为了缓解现有点云补全方法在特征提取过程中很难平衡局部特征和全局特征的问题,提出了一种双分支结构的多层级点云补全算法。利用两个独立的分支网络分别提取出输入点云的局部特征信息和全局特征信息,再将两种特征信息进行拼接形成特征... 为了缓解现有点云补全方法在特征提取过程中很难平衡局部特征和全局特征的问题,提出了一种双分支结构的多层级点云补全算法。利用两个独立的分支网络分别提取出输入点云的局部特征信息和全局特征信息,再将两种特征信息进行拼接形成特征向量。使用五层联合感知机将特征向量映射成多个维度,进而提取多维特征信息并将其整合成最终特征向量。采用金字塔结构在256、512、1024特征维度上对最终特征向量进行特征解码,预测三种不同分辨率的点云。引入鉴别器网络,通过联合训练鉴别器产生的对抗损失和分层重建点云产生的补全损失去优化网络。在ShapeNet数据集上进行实验,算法显著提升了点云补全精度,并且在缺失大面积点云时也能恢复出较为完善的物体形状。 展开更多
关键词 三维点云 形状补全 深度学习 双分支结构 鉴别器网络
下载PDF
双分支GAN与注意力机制的火灾隐患检测算法
17
作者 李牧 何金诚 杨恒 《计算机工程与应用》 CSCD 北大核心 2024年第14期228-239,共12页
针对传统火灾报警在夜间等极端天气下效果不佳,受限于复杂环境等问题,提出一种基于红外与可见光图像融合的火灾预警算法。在生成对抗网络(GAN)中设计并提出双分支注意力结构。其中一条分支通过密集残差子网提取更多鲁棒的特征信息,另一... 针对传统火灾报警在夜间等极端天气下效果不佳,受限于复杂环境等问题,提出一种基于红外与可见光图像融合的火灾预警算法。在生成对抗网络(GAN)中设计并提出双分支注意力结构。其中一条分支通过密集残差子网提取更多鲁棒的特征信息,另一条分支通过注意力子网(efficient coordinate channel attention group,ECCAG)弥补空间信息的缺失,以最大限度获取更多高频细节特征,设计并提出了一种调节损失作为损失函数,通过改进GAN算法得到融合图像,根据提出的火灾预警算法判断是否存在火灾隐患。实验结果表明:改进GAN算法得到的融合数据集目标检测的平均准确率为96.19%,相较于单一红外数据集与原始GAN算法数据集的目标检测平均准确率分别提高了11.09个百分点与6.2个百分点,在公开数据集TNO与LLVIP数据集上测试火灾患检测准确率为97.45%。结果表明,火灾预警算法可以在未发生火灾时及时预警,针对不同场景都可得到显著的检测效果。 展开更多
关键词 生成对抗网络 图像融合 早期火灾预警 双分支结构 注意力机制
下载PDF
融合形状结构恢复和细节补偿的双分支点云修复网络
18
作者 缪永伟 景程宇 +1 位作者 刘复昌 张旭东 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第9期1450-1462,共13页
针对传统点云修复中难以有效地保持原始形状细节结构信息的问题,提出一种融合形状全局结构恢复和局部细节补偿的双分支点云形状修复网络.网络中的形状全局结构恢复分支为编解码-解码器结构,编码器对缺失点云数据进行特征变换以克服点云... 针对传统点云修复中难以有效地保持原始形状细节结构信息的问题,提出一种融合形状全局结构恢复和局部细节补偿的双分支点云形状修复网络.网络中的形状全局结构恢复分支为编解码-解码器结构,编码器对缺失点云数据进行特征变换以克服点云形状的旋转不变性,利用最大池化操作解决点云的无序性问题,并通过多层感知器生成原始点云的特征码字,解码器对编码得到的特征码字使用4个二维网格进行2次折叠操作,拟合点云形状得到粗修复结果;为了补偿点云粗修复结果的形状细节信息,网络中的局部细节补偿分支对编码器提取得到的不同维度特征,通过层次特征学习和多层次特征融合学习点云形状的几何结构特征,有效地恢复缺失点云数据并保留原始形状细节信息;最终将经全局结构恢复分支和局部细节补偿分支分别得到的点云数据拼接融合,再进行迭代最远点重采样,得到点云形状精修复结果.实验结果表明,在ShapeNet数据集上,所提网络比已有网络修复结果的平均CD误差和平均EMD误差分别低16%~29%和19%~65%;在ModelNet数据集上,比已有网络修复结果的平均CD误差和平均EMD误差分别低6%~41%和31%~59%;该网络可以修复原始形状的整体结构信息并能有效地恢复其形状细节,生成采样点分布均匀的完整点云模型,且对模型噪声和不同程度的模型缺失均具有鲁棒性. 展开更多
关键词 点云形状 修复补全 几何细节补偿 双分支网络 编码器-解码器
下载PDF
基于Wi-Fi感知的多用户身份识别研究
19
作者 魏忠诚 陈炜 +3 位作者 董延虎 连彬 王巍 赵继军 《物联网学报》 2024年第1期111-121,共11页
随着无线感知技术的发展,基于Wi-Fi的身份识别研究在人机交互和家居安防等领域备受关注。尽管基于Wi-Fi信号的身份识别已经取得了初步的成功,但是目前主要适用于用户独立行为场景,并发行为下的多用户身份识别仍然面临着一系列挑战,包括... 随着无线感知技术的发展,基于Wi-Fi的身份识别研究在人机交互和家居安防等领域备受关注。尽管基于Wi-Fi信号的身份识别已经取得了初步的成功,但是目前主要适用于用户独立行为场景,并发行为下的多用户身份识别仍然面临着一系列挑战,包括用户之间的相互干扰以及模型鲁棒性差等问题。因此,提出了一种并发行为下多用户身份识别系统Wiblack,其核心思想是训练一个多分支深度神经网络(Wiblack-Net)来提取每个单用户的独特特征。首先,利用主干网络提取多用户之间的共同特征;然后,为每个用户分配一个二分类器以此判断给定群体中是否存在目标用户,在此基础上基于并发行为实现多个用户身份识别。此外,将Wiblack与多个独立的二分类模型和单个多分类模型进行对比实验,对运行效率和系统性能进行分析。实验结果显示,在同时识别3个用户身份时,Wibalck平均准确率达到了92.97%,平均精确度为93.71%,平均召回率为93.24%,平均F1值为92.43%。 展开更多
关键词 Wi-Fi感知 信道状态信息 身份识别 多人识别 多分支深度神经网络
下载PDF
数据分布不平衡的课堂参与度自动识别研究 被引量:1
20
作者 王嘉豪 徐敏 +1 位作者 孙众 周修庄 《小型微型计算机系统》 CSCD 北大核心 2024年第2期431-437,共7页
在线课堂学习参与度自动评估是提升课堂教学效果的重要技术途径.本文使用计算机视觉特征分析技术,提出一种在线课堂学习参与度自动识别方法.首先,采用VGGFace网络和C3D网络分别对学习者的面部表情和身体姿态进行特征编码;然后,设计基于... 在线课堂学习参与度自动评估是提升课堂教学效果的重要技术途径.本文使用计算机视觉特征分析技术,提出一种在线课堂学习参与度自动识别方法.首先,采用VGGFace网络和C3D网络分别对学习者的面部表情和身体姿态进行特征编码;然后,设计基于注意力机制的双层级联聚合模块,对视频片段的特征进行融合,使得参与度高度相关的帧序列获得更大的权重.由于低参与度样本的数量和高参与度样本相比非常少,课堂参与度自动识别属于类别不平衡的数据分类问题.类别高度不均衡,导致模型训练存在很大挑战.为了缓解参与度数据分布不平衡带来的影响,本文提出采用双边分支网络作为参与度识别基本的网络结构.其中,传统学习分支进行表征学习,重新平衡分支关注少数样本分类,将特征学习和分类器学习进行分别建模.在DAiSEE数据集上的实验结果表明,提出的方法有效提升了参与度自动识别性能,尤其对少数类样本的分类具有明显的性能提升. 展开更多
关键词 参与度识别 深度学习 注意力机制 不平衡样本分类 双边分支网络
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部