Precise quantifi cation of climate-growth relationships can make a major contribution to scientifi c forest management.However,whether diff erences in the response of growth to climate at diff erent altitudes remains ...Precise quantifi cation of climate-growth relationships can make a major contribution to scientifi c forest management.However,whether diff erences in the response of growth to climate at diff erent altitudes remains unclear.To answer this,264 trees of Larix kaempferi from 88 plots,representing diff erent altitudinal ranges(1000-2100 m)and tree classes were sampled and used to develop tree-ring chronologies.Tree-ring growth(TRG)was either positively(dominant)or negatively(intermediate and suppressed)correlated with climate in diff erent tree classes at diff erent altitudes.TRG was strongly correlated with growing season at low altitudes,but was less sensitive to climate at middle altitudes.It was mainly limited by precipitation and was highly sensitive to climate at low altitudes.Climate-growth relationships at high altitudes were opposite compared to those at low altitudes.TRG of dominant trees was more sensitive to climate change compared to intermediate and suppressed trees.Climate factors(annual temperatures;moisture,the number of frost-free days)had diff erent eff ects on tree-ring growth of diff erent tree classes along altitudinal gradients.It was concluded that the increase in summer temperatures decreased water availability,resulting in a signifi cant decline in growth rates after 2005 at lower altitudes.L.kaempferi is suitable for planting in middle altitudes and dominant trees were the best sampling choice for accurately assessing climate-growth relationships.展开更多
Based on the cross-dated tree-ring samples collected from the middle Qilian Moun- tain, a standard ring-width chronology had been developed, which covered the period AD 1000 to 2000. The correlations between the chron...Based on the cross-dated tree-ring samples collected from the middle Qilian Moun- tain, a standard ring-width chronology had been developed, which covered the period AD 1000 to 2000. The correlations between the chronology and climatic records from the nearby meteorological stations indicated that temperature was the dominant climatic factor for tree growth at upper timberline, and the most important climatic factor for the tree growth in the area was the mean temperature from previous December to current April. The temperature variations recovered from the ring-width data showed a cold period during the “Little Ice Age” and the con- tinuous warming during the twentieth century. Comparison between the ring-width chronology and δ18O records from the Dunde ice core in the Qilian Mountain indicated that there was a con- sistent trend in both time series. A significant correlation existed between our ring-width chro- nology and the Northern Hemispheric temperature, suggesting that the climate changes in the Qilian Mountain were not only driven by regional factors, but also responsive to the global cli- mate.展开更多
Two robust precipitation reconstructions were conducted by combining tree-ring chronologies, dryness/wetness indices from historical documents, and climate data from the global grid. It was found that the recurrent dr...Two robust precipitation reconstructions were conducted by combining tree-ring chronologies, dryness/wetness indices from historical documents, and climate data from the global grid. It was found that the recurrent drought history of a region can help us understand the variability of precipitation. Several dry/wet periods during the past four centuries and potential cycles of precipitation variation were determined. Furthermore, the reconstructions are not only consistent well with each other in North-central China, but also in good agreement with variations of precipitation in northeastern Mongolia, the Longxi area in Gangsu Province and the Dulan area of Qinghai Province, and the snow accumulation of the Guliya glacier. These synchronous variations indicate that it is valuable to study various climate records, find common information and determine the driving force of climate change.展开更多
Droughts are the most frequent natural disaster in regions at the margins of the East Asian summer monsoon(EASM),which pose threats to agriculture,the economy,and human lives.However,the limitations of only approximat...Droughts are the most frequent natural disaster in regions at the margins of the East Asian summer monsoon(EASM),which pose threats to agriculture,the economy,and human lives.However,the limitations of only approximately 60 years of meteorological observations hamper our understanding of the characteristics and mechanisms of local hydroclimate.Trees growing in the marginal region of the EASM are usually sensitive to moisture variations and have played important roles in past hydroclimatic reconstructions.Here,a 303-year tree-ring-width chronology of Pinus tabulaeformis from Mt.Lama,which is located in the junction of the Liaoning Province and Inner Mongolia,China,was used to reconstruct the May-August Palmer drought severity index(PDSI)in the marginal region of the EASM.The transfer function explains 48.0%(or 47.2%after adjusting for the loss of the degrees of freedom)of the variance over the calibration period from 1946 to 2012.A spatial correlation analysis demonstrates that our PDSI reconstruction can represent the drought variability on the northernmost margin of the EASM.The winter Asian polar vortex area index showed a delayed impact on the summer EASM precipitation in the following year.展开更多
Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years,which is of great significance to the study of climate and envi...Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years,which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia.Forest trees are ecologically significant in the local environment,and therefore the tree ring analysis can provide a clear record of regional historical climate.This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index(SPEI)in Northwest Tajikistan,based on 56 tree ring samples collected from Shahristan in the Pamir region.Climate data including precipitation,temperature and the SPEI were downloaded from the Climate Research Unit(CRU)TS 4.00.The COFECHA program was used for cross-dating,and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees.A significant correlation was found between the radial growth of J.turkestanica trees and the monthly mean SPEI of February–April.The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed,and the reconstruction equation explained 42.5%of the variance.During the past 122 a(1895–2016),the study area has experienced three wetter periods(precipitation above average):1901–1919,1945–1983 and 1995–2010,and four drier periods(precipitation below average):1895–1900,1920–1944,1984–1994 and 2011–2016.The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016.This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.展开更多
Aims A lack of explicit information on differential controls on net primary productivity(NPP)across regions and ecosystem types is largely responsible for uncertainties in global trajectories of terrestrial carbon bal...Aims A lack of explicit information on differential controls on net primary productivity(NPP)across regions and ecosystem types is largely responsible for uncertainties in global trajectories of terrestrial carbon balance with changing environment.The objectives of this study were to determine how NPP of different forest types would respond to inter-annual variability of climate and to examine the responses of NPP to future climate change scenarios across contrasting forest types in northern China.Methods We investigated inter-annual variations of NPP in relation to climate variability across three forest types in northern China,including a boreal forest dominated by Larix gmelinii Rupr.,and two temperate forests dominated by Pinus tabulaeformis Carr.and Quercus wutaishanica Mayr.,respectively,and studied the responses of NPP in these forests to predicted changes in climate for the periods 2011–40,2041–70 and 2070–100 under carbon emission scenarios A2 and B2 of Intergovernmental Panel on Climate Change.We simulated the responses of NPP to predicted changes in future climate as well as inter-annual variability of the present climate with the Biome-BGC version 4.2 based on site-and species-specific parameters.The modeled forest NPP data were validated against values in literature for similar types of forests and compared with inter-annual growth variations reflected by tree-ring width index(RWI)at the study sites.Important Findings Inter-annual variations in modeled NPP during the period 1960–06 were mostly consistent with the temporal patterns in RWI.There were contrasting responses of modeled NPP among the three forest types to inter-annual variability of the present climate as well as to predicted changes in future climate.The modeled NPP was positively related to annual mean air temperature in the L.gmelinii forest(P<0.001),but negatively in the P.tabulaeformis forest(P=0.05)and the Q.wutaishanica forest(P=0.03),while the relationships of modeled NPP with annual precipitation for the three forest types were all positive.Multiple stepwise regression analyses showed that temperature was a more important constraint of NPP than precipitation in the L.gmelinii forest,whereas precipitation appeared to be a prominent factor limiting the growth in P.tabulaeformis and Q.wutaishanica.Model simulations suggest marked,but differential increases in NPP across the three forest types with predicted changes in future climate.展开更多
基金funded by Fundamental Research Funds of CAF (CAFYBB2022ZA00103)National Natural Science Foundation of China (General Program)(31971652)+1 种基金National Natural Science Foundation of China (32001308)Fundamental Research Funds of CAF (CAFYBB2022ZC001)
文摘Precise quantifi cation of climate-growth relationships can make a major contribution to scientifi c forest management.However,whether diff erences in the response of growth to climate at diff erent altitudes remains unclear.To answer this,264 trees of Larix kaempferi from 88 plots,representing diff erent altitudinal ranges(1000-2100 m)and tree classes were sampled and used to develop tree-ring chronologies.Tree-ring growth(TRG)was either positively(dominant)or negatively(intermediate and suppressed)correlated with climate in diff erent tree classes at diff erent altitudes.TRG was strongly correlated with growing season at low altitudes,but was less sensitive to climate at middle altitudes.It was mainly limited by precipitation and was highly sensitive to climate at low altitudes.Climate-growth relationships at high altitudes were opposite compared to those at low altitudes.TRG of dominant trees was more sensitive to climate change compared to intermediate and suppressed trees.Climate factors(annual temperatures;moisture,the number of frost-free days)had diff erent eff ects on tree-ring growth of diff erent tree classes along altitudinal gradients.It was concluded that the increase in summer temperatures decreased water availability,resulting in a signifi cant decline in growth rates after 2005 at lower altitudes.L.kaempferi is suitable for planting in middle altitudes and dominant trees were the best sampling choice for accurately assessing climate-growth relationships.
基金supported by the Major Knowiedge Innovation Project of the Chinese Aademy of Sciences(Gant Nos.KZCX1-1002 and KZCX1-1009)the opening fund of the Key Laboratory of Ice-core and Cold-regions Environment,Cold and Arid Regions Environment and Engineering Research Insti tute,Chinese Academy ofSciences(Grant No.210506)..
文摘Based on the cross-dated tree-ring samples collected from the middle Qilian Moun- tain, a standard ring-width chronology had been developed, which covered the period AD 1000 to 2000. The correlations between the chronology and climatic records from the nearby meteorological stations indicated that temperature was the dominant climatic factor for tree growth at upper timberline, and the most important climatic factor for the tree growth in the area was the mean temperature from previous December to current April. The temperature variations recovered from the ring-width data showed a cold period during the “Little Ice Age” and the con- tinuous warming during the twentieth century. Comparison between the ring-width chronology and δ18O records from the Dunde ice core in the Qilian Mountain indicated that there was a con- sistent trend in both time series. A significant correlation existed between our ring-width chro- nology and the Northern Hemispheric temperature, suggesting that the climate changes in the Qilian Mountain were not only driven by regional factors, but also responsive to the global cli- mate.
基金supported by the National Natural Science Foundation of China (No. 40576035), IGCP464Chinese Offshore Investigation and Assessment (No. 908-01-ZH2)
文摘Two robust precipitation reconstructions were conducted by combining tree-ring chronologies, dryness/wetness indices from historical documents, and climate data from the global grid. It was found that the recurrent drought history of a region can help us understand the variability of precipitation. Several dry/wet periods during the past four centuries and potential cycles of precipitation variation were determined. Furthermore, the reconstructions are not only consistent well with each other in North-central China, but also in good agreement with variations of precipitation in northeastern Mongolia, the Longxi area in Gangsu Province and the Dulan area of Qinghai Province, and the snow accumulation of the Guliya glacier. These synchronous variations indicate that it is valuable to study various climate records, find common information and determine the driving force of climate change.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB40000000National Natural Science Foundation of China,No.41630531State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS,No.SKLLQG2041。
文摘Droughts are the most frequent natural disaster in regions at the margins of the East Asian summer monsoon(EASM),which pose threats to agriculture,the economy,and human lives.However,the limitations of only approximately 60 years of meteorological observations hamper our understanding of the characteristics and mechanisms of local hydroclimate.Trees growing in the marginal region of the EASM are usually sensitive to moisture variations and have played important roles in past hydroclimatic reconstructions.Here,a 303-year tree-ring-width chronology of Pinus tabulaeformis from Mt.Lama,which is located in the junction of the Liaoning Province and Inner Mongolia,China,was used to reconstruct the May-August Palmer drought severity index(PDSI)in the marginal region of the EASM.The transfer function explains 48.0%(or 47.2%after adjusting for the loss of the degrees of freedom)of the variance over the calibration period from 1946 to 2012.A spatial correlation analysis demonstrates that our PDSI reconstruction can represent the drought variability on the northernmost margin of the EASM.The winter Asian polar vortex area index showed a delayed impact on the summer EASM precipitation in the following year.
基金This study was supported by the CAS"Light of West China"Program(2018-XBQNXZ-B-017,2015-XBQN-B-22)the 100 Talents Program of the Chinese Academy of Sciences(Y931201)the High Level Talent Introduction Project of Xinjiang Uygur Autonomous Region(Y942171).
文摘Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years,which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia.Forest trees are ecologically significant in the local environment,and therefore the tree ring analysis can provide a clear record of regional historical climate.This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index(SPEI)in Northwest Tajikistan,based on 56 tree ring samples collected from Shahristan in the Pamir region.Climate data including precipitation,temperature and the SPEI were downloaded from the Climate Research Unit(CRU)TS 4.00.The COFECHA program was used for cross-dating,and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees.A significant correlation was found between the radial growth of J.turkestanica trees and the monthly mean SPEI of February–April.The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed,and the reconstruction equation explained 42.5%of the variance.During the past 122 a(1895–2016),the study area has experienced three wetter periods(precipitation above average):1901–1919,1945–1983 and 1995–2010,and four drier periods(precipitation below average):1895–1900,1920–1944,1984–1994 and 2011–2016.The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016.This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.
基金Public Welfare Forestry of the State Forestry Administration of China(201104008)Beijing Municipal Commission of Education for development of Key Laboratory for Silviculture and Conservation.
文摘Aims A lack of explicit information on differential controls on net primary productivity(NPP)across regions and ecosystem types is largely responsible for uncertainties in global trajectories of terrestrial carbon balance with changing environment.The objectives of this study were to determine how NPP of different forest types would respond to inter-annual variability of climate and to examine the responses of NPP to future climate change scenarios across contrasting forest types in northern China.Methods We investigated inter-annual variations of NPP in relation to climate variability across three forest types in northern China,including a boreal forest dominated by Larix gmelinii Rupr.,and two temperate forests dominated by Pinus tabulaeformis Carr.and Quercus wutaishanica Mayr.,respectively,and studied the responses of NPP in these forests to predicted changes in climate for the periods 2011–40,2041–70 and 2070–100 under carbon emission scenarios A2 and B2 of Intergovernmental Panel on Climate Change.We simulated the responses of NPP to predicted changes in future climate as well as inter-annual variability of the present climate with the Biome-BGC version 4.2 based on site-and species-specific parameters.The modeled forest NPP data were validated against values in literature for similar types of forests and compared with inter-annual growth variations reflected by tree-ring width index(RWI)at the study sites.Important Findings Inter-annual variations in modeled NPP during the period 1960–06 were mostly consistent with the temporal patterns in RWI.There were contrasting responses of modeled NPP among the three forest types to inter-annual variability of the present climate as well as to predicted changes in future climate.The modeled NPP was positively related to annual mean air temperature in the L.gmelinii forest(P<0.001),but negatively in the P.tabulaeformis forest(P=0.05)and the Q.wutaishanica forest(P=0.03),while the relationships of modeled NPP with annual precipitation for the three forest types were all positive.Multiple stepwise regression analyses showed that temperature was a more important constraint of NPP than precipitation in the L.gmelinii forest,whereas precipitation appeared to be a prominent factor limiting the growth in P.tabulaeformis and Q.wutaishanica.Model simulations suggest marked,but differential increases in NPP across the three forest types with predicted changes in future climate.