期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析
1
作者 欧晋稳 张古文 +6 位作者 冯志娟 王斌 卜远鹏 徐钰 茹磊 刘娜 龚亚明 《浙江农业学报》 CSCD 北大核心 2024年第9期2031-2041,共11页
海藻糖在植物代谢、生长发育和抗逆性中起着重要作用。海藻糖-6-磷酸磷酸酶(TPP)基因对海藻糖的生物合成至关重要。大豆是重要豆类作物,种子含有丰富的蛋白质和油脂,其TPP基因家族少有报道。为分析TPP基因在大豆中的结构和功能,利用生... 海藻糖在植物代谢、生长发育和抗逆性中起着重要作用。海藻糖-6-磷酸磷酸酶(TPP)基因对海藻糖的生物合成至关重要。大豆是重要豆类作物,种子含有丰富的蛋白质和油脂,其TPP基因家族少有报道。为分析TPP基因在大豆中的结构和功能,利用生物信息学方法在大豆全基因组中筛选得到15个GmTPP基因。系统发育分析表明,这15个GmTPP可分为3个亚家族,每个GmTPP含有9~11个内含子,同一亚家族的GmTPP基因的内含子数目相同。顺式作用元件分析表明,GmTPP基因参与植物激素和环境胁迫反应。此外,还利用转录组数据研究这些GmTPP在不同组织中的表达模式以及对不同的非生物胁迫的表达特征。结果显示,GmTPP在大豆各个组织器官中均有特定的表达模式,在盐胁迫、干旱胁迫处理下表达不同。该研究不仅为揭示GmTPP基因家族在大豆海藻糖调控中的作用奠定了基础,也为利用TPP基因家族提高大豆抗逆性提供一定的参考价值。 展开更多
关键词 海藻糖-6-磷酸磷酸酶基因gmtpp 大豆 非生物胁迫 表达分析
下载PDF
Trehalose-6-phosphate phosphatases are involved in trehalose synthesis and metamorphosis in Bactrocera minax 被引量:1
2
作者 Jia Wang Huan Fan +2 位作者 Ying Li Tong-Fang Zhang Ying-Hong Liu 《Insect Science》 SCIE CAS CSCD 2022年第6期1643-1658,共16页
Trehalose is the principal sugar circulating in the hemolymph of insects,and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase(TPS)and trehalose-6-phosphate phosphatase(TPP).Insect TPS is a fused enzy... Trehalose is the principal sugar circulating in the hemolymph of insects,and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase(TPS)and trehalose-6-phosphate phosphatase(TPP).Insect TPS is a fused enzyme containing both TPS do-main and TPP domain.Thus,many insects do not possess TPP genes as TPSs have re-placed the function of TPPs.However,TPPs are widely distributed across the dipteran insects,while the roles they play remain largely unknown.In this study,3 TPP genes from notorious dipteran pest Bactrocera minax(BmiTPPB,BmiTPPCl,and BmiTPPC2)were identified and characterized.The different temporal-spatial expression patterns of 3 BmiTPPs implied that they exert different functions in B.minax.Recombinant BmiTPPs were heterologously expressed in yeast cells,and all purified proteins exhibited enzy-matic activities,despite the remarkable disparity in performance between BmiTPPB and BmiTPPCs.RNA interference revealed that all BmiTPPs were successfully downregulated after double-stranded RNA injection,leading to decreased trehalose content and increased glucose content.Also,suppression of BmiTPPs significantly affected expression of down-stream genes and increased the mortality and malformation rate.Collectively,these results indicated that all 3 BmiTPPs in B.minax are involved in trehalose synthesis and metamor-phosis.Thus,these genes could be evaluated as insecticidal targets for managing B.minax,andevenforotherdipteranpests. 展开更多
关键词 Bactrocera minax heterologous expression METAMORPHOSIS TREHALOSE trehalose-6-phosphate phosphatase RNA interference
原文传递
Trehalose:A sugar molecule involved in temperature stress management in plants
3
作者 Ali Raza Savita Bhardwaj +7 位作者 Md Atikur Rahman Pedro García-Caparrós Madiha Habib Faisal Saeed Sidra Charagh Christine H.Foyer Kadambot H.M.Siddique Rajeev K.Varshney 《The Crop Journal》 SCIE CSCD 2024年第1期1-16,共16页
Trehalose(Tre)is a non-reducing disaccharide found in many species,including bacteria,fungi,invertebrates,yeast,and even plants,where it acts as an osmoprotectant,energy source,or protein/membrane protector.Despite re... Trehalose(Tre)is a non-reducing disaccharide found in many species,including bacteria,fungi,invertebrates,yeast,and even plants,where it acts as an osmoprotectant,energy source,or protein/membrane protector.Despite relatively small amounts in plants,Tre concentrations increase following exposure to abiotic stressors.Trehalose-6-phosphate,a precursor of Tre,has regulatory functions in sugar metabolism,crop production,and stress tolerance.Among the various abiotic stresses,temperature extremes(heat or cold stress)are anticipated to impact crop production worldwide due to ongoing climate changes.Applying small amounts of Tre can mitigate negative physiological,metabolic,and molecular responses triggered by temperature stress.Trehalose also interacts with other sugars,osmoprotectants,amino acids,and phytohormones to regulate metabolic reprogramming that underpins temperature stress adaptation.Transformed plants expressing Tre-synthesis genes accumulate Tre and show improved stress tolerance.Genome-wide studies of Tre-encoding genes suggest roles in plant growth,development,and stress tolerance.This review discusses the functions of Tre in mitigating temperature stress—highlighting genetic engineering approaches to modify Tre metabolism,crosstalk,and interactions with other molecules—and in-silico approaches for identifying novel Tre-encoding genes in diverse plant species.We consider how this knowledge can be used to develop temperature-resilient crops essential for sustainable agriculture. 展开更多
关键词 Abiotic stress gene expression genetic engineering OSMOLYTE trehalose-6-phosphate
下载PDF
SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato 被引量:1
4
作者 DU Dan HU Xin +6 位作者 SONG Xiao-mei XIA Xiao-jiao SUN Zhen-yu LANG Min PAN Yang-lu ZHENG Yu PAN Yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2384-2396,共13页
Salinity tolerance is an important physiological index for crop breeding.Roots are typically the first plant tissue to withstand salt stress.In this study,we found that the tomato(Solanum lycopersicum)trehalose-6-phos... Salinity tolerance is an important physiological index for crop breeding.Roots are typically the first plant tissue to withstand salt stress.In this study,we found that the tomato(Solanum lycopersicum)trehalose-6-phosphate phosphatase(SlTPP4)gene is induced by abscisic acid(ABA)and salt,and is mainly expressed in roots.Overexpression of SlTPP4 in tomato enhanced tolerance to salt stress,resulting in better growth performance.Under saline conditions,SlTPP4 overexpression plants demonstrated enhanced sucrose metabolism,as well as increased expression of genes related to salt tolerance.At the same time,expression of genes related to ABA biosynthesis and signal transduction was enhanced or altered,respectively.In-depth exploration demonstrated that SlTPP4 enhances Casparian band development in roots to restrict the intake of Na^(+).Our study thus clarifies the mechanism of SlTPP4-mediated salt tolerance,which will be of great importance for the breeding of salt-tolerant tomato crops. 展开更多
关键词 trehalose-6-phosphate phosphatase(TPP) salt tolerance root ABA tomato(Solanum lycopersicum)
下载PDF
Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae
5
作者 Jie Liu Shi-Zhao Zhou +13 位作者 Yun-Long Liu Bin-Yan Zhao Dongmei Yu Mi-Cai Zhong Xiao-Dong Jiang Wei-Hua Cui Jiu-Xia Zhao Juan Qiu Liang-Min Liu Zhen-Hua Guo Hong-Tao Li Dun-Yan Tan Jin-Yong Hu De-Zhu Li 《Plant Communications》 SCIE CSCD 2024年第7期68-89,共22页
Brassicaceae represents an important plant family from both a scientific and economic perspective.However,genomic features related to the early diversification of this family have not been fully characterized,especial... Brassicaceae represents an important plant family from both a scientific and economic perspective.However,genomic features related to the early diversification of this family have not been fully characterized,especially upon the uplift of the Tibetan Plateau,which was followed by increasing aridity in the Asian interior,intensifying monsoons in Eastern Asia,and significantly fluctuating daily temperatures.Here,we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius(Arabodae;clade D)and Tetracme quadricornis(Hesperodae;clade E),together with genomes representing all major Brassicaceae clades and the basal Aethionemeae.We reconstructed an ancestral core Brassicaceae karyotype(CBK)containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae.We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events,which correlate well with the early divergence of core Brassicaceae.We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1(TPS1)gene family,which encodes enzymes with essential regulatory roles in flowering time and embryo development.The TPS1s were mainly randomly amplified,followed by expression divergence.Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment. 展开更多
关键词 CRUCIFERAE genomic features ancient hybridization core Brassicaceae karyotype CBK trehalose-6-phosphate SYNTHASE 1 genes TPS1s
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部