The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the a...The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.展开更多
The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model ...The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model HadGEM1, which was developed by the Met Office Hadley Centre for Climate Research. The results indicate that HadGEM1 performs well in simulating the observed decreasing trend of global land monsoon precipitation over the past 50 years. This trend mainly occurred in the Northern Hemisphere and is significantly different from the trend of natural variability due to ocean-atmosphere-land interactions. The coherence between the simulation and the observations indicates that the specified external forcing agents, including GHGs and aerosols as well as solar variability and ozone, are important factors that have affected the decreasing trend of global land monsoon precipitation in the past 50 years.展开更多
A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improve...A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improvement of the linear model proposed by Solow et al. (1987). Both theoretical deduction and case calculation show that our version can search the turning point and period accurately and objectively. In particular it is fit for computer exploring the turning points in long-range records from stations covering a large area, thus avoiding subjective judgement by a usual drawing method.展开更多
Tremendous achievements of live pig industry in China are closely related to the industrialization of the industry,and development trend of the latter is essential for maintaining sustained and stable development of a...Tremendous achievements of live pig industry in China are closely related to the industrialization of the industry,and development trend of the latter is essential for maintaining sustained and stable development of animal husbandry.The paper,on the basis of defining the evolution of industrialized live pig breeding model,elaborated the industrialized operation models of live pig industry in China since 1978,i.e.household operation,large-scale operation,and industrialized operation.The external environment for the development of live pig industry was analyzed,such as global economic competition,development of experience economy,and stronger green consciousness of consumers.Then development trend of industrialized live pig breeding was analyzed as"expanding international market,consolidating domestic market,integrating resources of live pig industry for the integrated operation,promoting the industrialization model and breeding technology driven by live pig processing,applying animal welfare and the internet of things in live pig breeding industry".展开更多
Integrated with GIS and remote sensing(RS) technology,a systematic analysis and its methodology for human-settlements social environment has been introduced.This methodology has been called spatial trend field model(S...Integrated with GIS and remote sensing(RS) technology,a systematic analysis and its methodology for human-settlements social environment has been introduced.This methodology has been called spatial trend field model(STFM).STFM's application history in the field of human-settlements social environment has been discussed at first.Then,some index data models have been created through STFM,which include population density trend field,human activity strength trend field,city-town spatial density trend field,urbanization ratio trend field,road density trend field,GDP spatial density trend field and PER-GDP spatial density trend field.With all above-mentioned indexes as input data,through Iterative Self-Organizing Data Analysis Techniques Algorithm(ISODATA),this paper makes a verification study of Chongqing municipality.The result of the case study confirms that STFM methodology is credible and has high efficiency for regional human-settlements study.展开更多
Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the...Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.展开更多
This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the ...This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.展开更多
基金Thailand Science ResearchInnovation Fund,and King Mongkut's University of Technology North Bangkok Contract No.KMUTNB-FF-65-45.
文摘The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.
基金supported by National Natural Science Foundation of China under GrantNos. 40625014, 40821092, and 90711004the National Basic Research Program of China (2006CB403603)the China Meteorological Administration (GYHY200706010,GYHY200706005)
文摘The authors examine the effects of external forcing agents such as greenhouse gases (GHGs) and aerosols, as well as solar variability and ozone, on global land monsoon precipitation by using a coupled climate model HadGEM1, which was developed by the Met Office Hadley Centre for Climate Research. The results indicate that HadGEM1 performs well in simulating the observed decreasing trend of global land monsoon precipitation over the past 50 years. This trend mainly occurred in the Northern Hemisphere and is significantly different from the trend of natural variability due to ocean-atmosphere-land interactions. The coherence between the simulation and the observations indicates that the specified external forcing agents, including GHGs and aerosols as well as solar variability and ozone, are important factors that have affected the decreasing trend of global land monsoon precipitation in the past 50 years.
基金This wirk is supported jointly National Natural Science Foundation of China and China Meteoroloical Administration 8th-Five-year Major Project Foundation.
文摘A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improvement of the linear model proposed by Solow et al. (1987). Both theoretical deduction and case calculation show that our version can search the turning point and period accurately and objectively. In particular it is fit for computer exploring the turning points in long-range records from stations covering a large area, thus avoiding subjective judgement by a usual drawing method.
基金Supported by Business Management Cultivated Discipline of Rongchang Campus,Southwest University(RCQG207001)
文摘Tremendous achievements of live pig industry in China are closely related to the industrialization of the industry,and development trend of the latter is essential for maintaining sustained and stable development of animal husbandry.The paper,on the basis of defining the evolution of industrialized live pig breeding model,elaborated the industrialized operation models of live pig industry in China since 1978,i.e.household operation,large-scale operation,and industrialized operation.The external environment for the development of live pig industry was analyzed,such as global economic competition,development of experience economy,and stronger green consciousness of consumers.Then development trend of industrialized live pig breeding was analyzed as"expanding international market,consolidating domestic market,integrating resources of live pig industry for the integrated operation,promoting the industrialization model and breeding technology driven by live pig processing,applying animal welfare and the internet of things in live pig breeding industry".
基金supported by National 11th Five-Year Technology Support Program (Grant No 2008BAH31B06)National Natural Science Foundation of China (Grant No50738007)
文摘Integrated with GIS and remote sensing(RS) technology,a systematic analysis and its methodology for human-settlements social environment has been introduced.This methodology has been called spatial trend field model(STFM).STFM's application history in the field of human-settlements social environment has been discussed at first.Then,some index data models have been created through STFM,which include population density trend field,human activity strength trend field,city-town spatial density trend field,urbanization ratio trend field,road density trend field,GDP spatial density trend field and PER-GDP spatial density trend field.With all above-mentioned indexes as input data,through Iterative Self-Organizing Data Analysis Techniques Algorithm(ISODATA),this paper makes a verification study of Chongqing municipality.The result of the case study confirms that STFM methodology is credible and has high efficiency for regional human-settlements study.
文摘Trend forecasting is an important aspect in fault diagnosis and work state supervision. The principle, where Grey theory is applied in fault forecasting, is that the forecast system is considered as a Grey system; the existing known information is used to infer the unknown information's character, state and development trend in a fault pattern, and to make possible forecasting and decisions for future development. It involves the whitenization of a Grey process. But the traditional equal time interval Grey GM (1,1) model requires equal interval data and needs to bring about accumulating addition generation and reversion calculations. Its calculation is very complex. However, the non equal interval Grey GM (1,1) model decreases the condition of the primitive data when establishing a model, but its requirement is still higher and the data were pre processed. The abrasion primitive data of plant could not always satisfy these modeling requirements. Therefore, it establishes a division method suited for general data modeling and estimating parameters of GM (1,1), the standard error coefficient that was applied to judge accuracy height of the model was put forward; further, the function transform to forecast plant abrasion trend and assess GM (1,1) parameter was established. These two models need not pre process the primitive data. It is not only suited for equal interval data modeling, but also for non equal interval data modeling. Its calculation is simple and convenient to use. The oil spectrum analysis acted as an example. The two GM (1,1) models put forward in this paper and the new information model and its comprehensive usage were investigated. The example shows that the two models are simple and practical, and worth expanding and applying in plant fault diagnosis.
文摘This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.