The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness...Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness of reservoir stimulation. Temporary plugging and diverting fracturing(TPDF) is considered to be a potential uniform-stimulation method for creating multiple fractures simultaneously in the oilfield. However, the multi-fracture propagation morphology during TPDF is not clear now. The purpose of this study is to quantitatively investigate the multi-fracture propagation morphology during TPDF through true tri-axial fracturing experiments and CT scanning. Critical parameters such as fracture spacing, number of perforation clusters, the viscosity of fracturing fluid, and the in-situ stress have been investigated. The fracture geometry before and after diversion have been quantitively analyzed based on the two-dimensional CT slices and three-dimensional reconstruction method. The main conclusions are as follows:(1) When injecting the high viscosity fluid or perforating at the location with low in-situ stress, multiple hydraulic fractures would simultaneously propagate. Otherwise, only one hydraulic fracture was created during the initial fracturing stage(IFS) for most tests.(2) The perforation cluster effectiveness(PCE) has increased from 26.62% during the IFS to 88.86% after using diverters.(3) The diverted fracture volume has no apparent correlation with the pressure peak and peak frequency during the diversion fracturing stage(DFS) but is positively correlated with water-work.(4) Four types of plugging behavior in shale could be controlled by adjusting the diverter recipe and diverter injection time, and the plugging behavior includes plugging the natural fracture in the wellbore, plugging the previous hydraulic fractures, plugging the fracture tip and plugging the bedding.展开更多
The Earth is a tri-axial body, with unequal principal inertia moments, A, B and C. The corresponding principal axes a, b and c are determined by the mass distribution of the Earth, and their orientations vary with the...The Earth is a tri-axial body, with unequal principal inertia moments, A, B and C. The corresponding principal axes a, b and c are determined by the mass distribution of the Earth, and their orientations vary with the mass redistribution. In this study, the hydrologically induced variations are estimated on the basis of satellite gravimetric data, including those from satellite laser ranging (SLR) and gravity recovery and climate experiment (GRACE), and hydrological models from global land data assimilation system (GLDAS). The longitude variations of a and b are mainly related to the variations of the spherical harmonic coefficients C 22 and S 22, which have been estimated to be consisting annual variations of about 1.6 arc seconds and 1.8 arc seconds, respectively, from gravity data. This result is confirmed by land surface water storage provided by the GLDAS model. If the atmospheric and oceanic signals are removed from the spherical harmonic coefficients C 21 and S 21, the agreement of the orientation series for c becomes poor, possibly due to the inaccurate background models used in pre-processing of the satellite gravimetric data. Determination of the orientation variations may provide a better understanding of various phenomena in the study of the rotation of a tri-axial Earth.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was de...In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was designed. The EAGSAL consists of epoxy asphalt and fiberglass geogrid. The pull-out test, skewshearing test, bending beam test and fatigue test were conducted to evaluate the performance of the EAGSAL and a traditional stress-absorbing layer( TSAL). The results showthat the adhesive performance, shear performance, bending strength and fatigue performance of the EAGSAL with an optimal spraying volume of epoxy asphalt are better than those of optimally designed TSAL, and the maximum bending strain of the EAGSAL is very close to that of the TSAL. The EAGSAL has superior performance in reflective cracking resistance.Moreover, the EAGSAL with the optimal spraying volume of approximately 2. 0 L m^2 is thinner and lighter than the TSAL,which can decrease the thickness and improve the bearing ability of the whole pavement structure.展开更多
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
基金the National Natural Science Foundation of China fund (Project number: 52174045 and No. 52104011)Research Foundation of China University of Petroleum-Beijing at Karamay (No. XQZX20210001)PetroChina Innovation Foundation (2020D50070207)。
文摘Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness of reservoir stimulation. Temporary plugging and diverting fracturing(TPDF) is considered to be a potential uniform-stimulation method for creating multiple fractures simultaneously in the oilfield. However, the multi-fracture propagation morphology during TPDF is not clear now. The purpose of this study is to quantitatively investigate the multi-fracture propagation morphology during TPDF through true tri-axial fracturing experiments and CT scanning. Critical parameters such as fracture spacing, number of perforation clusters, the viscosity of fracturing fluid, and the in-situ stress have been investigated. The fracture geometry before and after diversion have been quantitively analyzed based on the two-dimensional CT slices and three-dimensional reconstruction method. The main conclusions are as follows:(1) When injecting the high viscosity fluid or perforating at the location with low in-situ stress, multiple hydraulic fractures would simultaneously propagate. Otherwise, only one hydraulic fracture was created during the initial fracturing stage(IFS) for most tests.(2) The perforation cluster effectiveness(PCE) has increased from 26.62% during the IFS to 88.86% after using diverters.(3) The diverted fracture volume has no apparent correlation with the pressure peak and peak frequency during the diversion fracturing stage(DFS) but is positively correlated with water-work.(4) Four types of plugging behavior in shale could be controlled by adjusting the diverter recipe and diverter injection time, and the plugging behavior includes plugging the natural fracture in the wellbore, plugging the previous hydraulic fractures, plugging the fracture tip and plugging the bedding.
基金supported by National 973 Project of China(2013CB733305)NSFC(41174011+3 种基金410210614112800341210006)Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(110206)
文摘The Earth is a tri-axial body, with unequal principal inertia moments, A, B and C. The corresponding principal axes a, b and c are determined by the mass distribution of the Earth, and their orientations vary with the mass redistribution. In this study, the hydrologically induced variations are estimated on the basis of satellite gravimetric data, including those from satellite laser ranging (SLR) and gravity recovery and climate experiment (GRACE), and hydrological models from global land data assimilation system (GLDAS). The longitude variations of a and b are mainly related to the variations of the spherical harmonic coefficients C 22 and S 22, which have been estimated to be consisting annual variations of about 1.6 arc seconds and 1.8 arc seconds, respectively, from gravity data. This result is confirmed by land surface water storage provided by the GLDAS model. If the atmospheric and oceanic signals are removed from the spherical harmonic coefficients C 21 and S 21, the agreement of the orientation series for c becomes poor, possibly due to the inaccurate background models used in pre-processing of the satellite gravimetric data. Determination of the orientation variations may provide a better understanding of various phenomena in the study of the rotation of a tri-axial Earth.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
基金The National Natural Science Foundation of China(No.51178114,51378122)
文摘In order to delay or eliminate the occurrence and expansion of the reflective cracking in the asphalt concrete overlay on old cement concrete pavement, an epoxy asphalt geogrid stress-absorbing layer( EAGSAL) was designed. The EAGSAL consists of epoxy asphalt and fiberglass geogrid. The pull-out test, skewshearing test, bending beam test and fatigue test were conducted to evaluate the performance of the EAGSAL and a traditional stress-absorbing layer( TSAL). The results showthat the adhesive performance, shear performance, bending strength and fatigue performance of the EAGSAL with an optimal spraying volume of epoxy asphalt are better than those of optimally designed TSAL, and the maximum bending strain of the EAGSAL is very close to that of the TSAL. The EAGSAL has superior performance in reflective cracking resistance.Moreover, the EAGSAL with the optimal spraying volume of approximately 2. 0 L m^2 is thinner and lighter than the TSAL,which can decrease the thickness and improve the bearing ability of the whole pavement structure.