We propose a systematic approach for generating Hamiltonian tri-integrable couplings of soliton hierarchies. The resulting approach is based on semi-direct sums of matrix Lie algebras consisting of 4× 4 block mat...We propose a systematic approach for generating Hamiltonian tri-integrable couplings of soliton hierarchies. The resulting approach is based on semi-direct sums of matrix Lie algebras consisting of 4× 4 block matrix Lie algebras. We apply the approach to the AKNS soIRon hierarchy, and Hamiltonian structures of the obtained tri-integrable couplings are constructed by the variational identity.展开更多
基金Supported in part by the Department of Mathematics and Statistics of University of South Floridathe State Administration of Foreign Experts Affairs of China+2 种基金the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Shanghai Leading Academic Discipline Project No.J50101the National Natural Science Foundation of China under Grant Nos.11271008,61072147,and11071159
文摘We propose a systematic approach for generating Hamiltonian tri-integrable couplings of soliton hierarchies. The resulting approach is based on semi-direct sums of matrix Lie algebras consisting of 4× 4 block matrix Lie algebras. We apply the approach to the AKNS soIRon hierarchy, and Hamiltonian structures of the obtained tri-integrable couplings are constructed by the variational identity.