Bi-metallic(Pt–Sn and Sn–Ni) and tri-metallic(Pt–Sn–Ni) catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al = 20) materials,were synthesized.N_2 adsorption–desorption,X-ray diffraction(...Bi-metallic(Pt–Sn and Sn–Ni) and tri-metallic(Pt–Sn–Ni) catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al = 20) materials,were synthesized.N_2 adsorption–desorption,X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET) test,and temperature programed desorption(NH3-TPD)were used to characterize physicochemical characteristics and textural properties of the Al-HMS catalysts.Catalytic performances on hydro-cracking of n-decane at different reaction conditions were studied in a microreactor.Comparison between Pt–Sn,Sn–Ni and Pt–Sn–Ni catalyst under different hydro-cracking conditions was made.The experimental results indicate that the proper balance between the acid and metal functions is the key in synthesizing a catalyst with a better performance in hydro-cracking.Tri-metallic catalyst exhibits the best catalytic performance in n-decane hydro-cracking than two bi-metallic catalysts.展开更多
Galvanic corrosion of tri-metallic couples is more complicated than that of bi-metallic couples. In this study, the effect of the pH of corrosive media on the galvanic corrosion of 2024 A1 alloy/Q235 mild steel/304 st...Galvanic corrosion of tri-metallic couples is more complicated than that of bi-metallic couples. In this study, the effect of the pH of corrosive media on the galvanic corrosion of 2024 A1 alloy/Q235 mild steel/304 stainless steel tri-metallic couples was investigated using potentiodynamic polarization, scanning electron microscopy, scanning vibrating electrode technique and a multi-channel galvanic corrosion meter. The results show that 2024 always acts as the only anode in 3.5 wt% NaCl at pH 5.56,9.72 and 12.0, while both Q235 and 2024 act as anodes at pH 2.39 in the initial stage and then the role of Q235 changes at longer coupling time, which can be attributed to the effect of pH on the surface film of 2024. It is also found that the galvanic current density of a tri-metallic couple is the superposition of two bi-metallic couples when cathodic reactions are controlled by the diffusion of oxygen, otherwise it is smaller than that of the sum of two bi-metallic couples. The localized corrosion instead of uniform corrosion of anodic metal is accelerated by galvanic corrosion.展开更多
Platinum(Pt)-based multi-metallic nanostructures show great promise as electrocatalysts for the oxygen reduction reaction(ORR) in fuel cell cathodes. Herein, we report a simple, one-step surfactant-directed synthetic ...Platinum(Pt)-based multi-metallic nanostructures show great promise as electrocatalysts for the oxygen reduction reaction(ORR) in fuel cell cathodes. Herein, we report a simple, one-step surfactant-directed synthetic strategy to directly synthesize tri-metallic PtPdNi mesoporous nanospheres(PtPdNi MNs) in a high yield. The synthesis could be accomplished in aqueous solution at mild reaction temperature(40C)without needing any organic solvent, yielding well-dispersed PtPdNi MNs with uniform shape and narrow size distribution. Benefitting from their unique mesoporous and highly open structure and tri-metallic composition, the as-synthesized PtPdNi MNs demonstrate superior catalytic activity and stability for ORR in acidic solution in comparison with PtPdNi nanodendrites(PtPdNi NDs), PtPd MNs and commercial Pt/C catalyst. The present approach may open a reliable path to the design of advanced electrocatalysts with desired performance.展开更多
Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and ac...Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and active sites/redox states are the keys to electrochemical performance enhancement.Distinguish from the reported mono-metal or binary-metal configurations,a new ternary-metal AlCoNi-LTH is coanchored onto a highly graphitized porous N-doped carbon matrix to develop superior 3D hierarchical microporous functional energy hybrids AlCoNi-LTHs/NAC.The constructed hybrids possess superior structural durability,good electrical conductivity,and rich active sites due to the strong interfacial conjunction and favorable synergistic effect between the doped porous carbon and AlCoNi nanosheets.Consequently,the AlCoNi-LTHs/NAC hybrids demonstrate high conductivity,reasonable specific surface area,and superior specific capacitance,and the assembled hybrid battery-type supercapacitor reveals an ideal energy density of 72.6 Wh kg^(-1)at a power density of 625 W kg^(-1),which is superior to the reported devices.This strategy opens a platform to rationally design polynary transition-metal layered hydroxides and their hybrids for efficient supercapacitors.展开更多
Tailoring the nanostructure/morphology and chemical composition is important to regulate the electronic configuration of electrocatalysts and thus enhance their performance for water and urea electrolysis.Herein,the n...Tailoring the nanostructure/morphology and chemical composition is important to regulate the electronic configuration of electrocatalysts and thus enhance their performance for water and urea electrolysis.Herein,the nitrogen-doped carbon-decorated tricomponent metal phosphides of FeP4 nanotube@Ni-Co-P nanocage(NC-FNCP)with unique nested hollow architectures are fabricated by a self-sacrifice template strategy.Benefiting from the multi-component synergy,the modification of nitrogen-doped carbon,and the modulation of nested porous hollow morphology,NC-FNCP facilitates rapid electron/mass transport in water and urea electrolysis.NC-FNCP-based anode shows low potentials of 248 mV and 1.37 V(vs.reversible hydrogen electrode)to attain 10 mA/cm^(2) for oxygen evolution reaction(OER)and urea oxidation reaction(UOR),respectively.In addition,the overall urea electrolysis drives 10 mA/cm^(2) at a comparatively low voltage of 1.52 V(vs.RHE)that is 110 mV lower than that of overall water electrolysis,as well as exhibits excellent stability over 20 h.This work strategizes a multi-shell-structured electrocatalyst with multi-compositions and explores its applications in a sustainable combination of hydrogen production and sewage remediation.展开更多
文摘Bi-metallic(Pt–Sn and Sn–Ni) and tri-metallic(Pt–Sn–Ni) catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al = 20) materials,were synthesized.N_2 adsorption–desorption,X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET) test,and temperature programed desorption(NH3-TPD)were used to characterize physicochemical characteristics and textural properties of the Al-HMS catalysts.Catalytic performances on hydro-cracking of n-decane at different reaction conditions were studied in a microreactor.Comparison between Pt–Sn,Sn–Ni and Pt–Sn–Ni catalyst under different hydro-cracking conditions was made.The experimental results indicate that the proper balance between the acid and metal functions is the key in synthesizing a catalyst with a better performance in hydro-cracking.Tri-metallic catalyst exhibits the best catalytic performance in n-decane hydro-cracking than two bi-metallic catalysts.
基金supported financially by the National Key Research and Development Program of China (No. 2017YFB0702100)the Natural Science Foundation of Liaoning Province (No. 20170540666)
文摘Galvanic corrosion of tri-metallic couples is more complicated than that of bi-metallic couples. In this study, the effect of the pH of corrosive media on the galvanic corrosion of 2024 A1 alloy/Q235 mild steel/304 stainless steel tri-metallic couples was investigated using potentiodynamic polarization, scanning electron microscopy, scanning vibrating electrode technique and a multi-channel galvanic corrosion meter. The results show that 2024 always acts as the only anode in 3.5 wt% NaCl at pH 5.56,9.72 and 12.0, while both Q235 and 2024 act as anodes at pH 2.39 in the initial stage and then the role of Q235 changes at longer coupling time, which can be attributed to the effect of pH on the surface film of 2024. It is also found that the galvanic current density of a tri-metallic couple is the superposition of two bi-metallic couples when cathodic reactions are controlled by the diffusion of oxygen, otherwise it is smaller than that of the sum of two bi-metallic couples. The localized corrosion instead of uniform corrosion of anodic metal is accelerated by galvanic corrosion.
基金financially supported by the National Natural Science Foundation of China (No. 21601154, 21776255, 21701141)Natural Science Foundation of Zhejiang Province (No. LQ18B010005)
文摘Platinum(Pt)-based multi-metallic nanostructures show great promise as electrocatalysts for the oxygen reduction reaction(ORR) in fuel cell cathodes. Herein, we report a simple, one-step surfactant-directed synthetic strategy to directly synthesize tri-metallic PtPdNi mesoporous nanospheres(PtPdNi MNs) in a high yield. The synthesis could be accomplished in aqueous solution at mild reaction temperature(40C)without needing any organic solvent, yielding well-dispersed PtPdNi MNs with uniform shape and narrow size distribution. Benefitting from their unique mesoporous and highly open structure and tri-metallic composition, the as-synthesized PtPdNi MNs demonstrate superior catalytic activity and stability for ORR in acidic solution in comparison with PtPdNi nanodendrites(PtPdNi NDs), PtPd MNs and commercial Pt/C catalyst. The present approach may open a reliable path to the design of advanced electrocatalysts with desired performance.
基金financial support from the Chang Jiang Scholars Program(51073047)the National Natural Science Foundation of China(51773049)+5 种基金the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund(HIT15-1A01)the Harbin city science and technology projects(2013DB4BP031 and RC2014QN017035)the Fundamental Research Funds for the Central Universities(HIT.OCEF.2021028)the Natural Science Funds of Heilongjiang Province(ZD2019B001)the Heilongjiang Touyan Team(HITTY-20190033)the funds from Chongqing Research Institute of HIT。
文摘Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and active sites/redox states are the keys to electrochemical performance enhancement.Distinguish from the reported mono-metal or binary-metal configurations,a new ternary-metal AlCoNi-LTH is coanchored onto a highly graphitized porous N-doped carbon matrix to develop superior 3D hierarchical microporous functional energy hybrids AlCoNi-LTHs/NAC.The constructed hybrids possess superior structural durability,good electrical conductivity,and rich active sites due to the strong interfacial conjunction and favorable synergistic effect between the doped porous carbon and AlCoNi nanosheets.Consequently,the AlCoNi-LTHs/NAC hybrids demonstrate high conductivity,reasonable specific surface area,and superior specific capacitance,and the assembled hybrid battery-type supercapacitor reveals an ideal energy density of 72.6 Wh kg^(-1)at a power density of 625 W kg^(-1),which is superior to the reported devices.This strategy opens a platform to rationally design polynary transition-metal layered hydroxides and their hybrids for efficient supercapacitors.
基金the National Natural Science Foundation of China(No.21601120)the Science and Technology Commission of Shanghai Municipality(Nos.17ZR1410500 and 19ZR1418100)+3 种基金Science and Technology Program of Shanghai(No.21010500300)STINT Joint China-Sweden Mobility Project(No.CH2017-7243)Swedish Government strategic faculty grant in material science(SFO,MATLIU)in Advanced Functional Materials(AFM)(VR Dnr.5.1-2015-5959)We also appreciate the High-Performance Computing Center of Shanghai University,and Shanghai Engineering Research Center of Intelligent Computing System(No.19DZ2252600)for providing the computing resources and technical support.
文摘Tailoring the nanostructure/morphology and chemical composition is important to regulate the electronic configuration of electrocatalysts and thus enhance their performance for water and urea electrolysis.Herein,the nitrogen-doped carbon-decorated tricomponent metal phosphides of FeP4 nanotube@Ni-Co-P nanocage(NC-FNCP)with unique nested hollow architectures are fabricated by a self-sacrifice template strategy.Benefiting from the multi-component synergy,the modification of nitrogen-doped carbon,and the modulation of nested porous hollow morphology,NC-FNCP facilitates rapid electron/mass transport in water and urea electrolysis.NC-FNCP-based anode shows low potentials of 248 mV and 1.37 V(vs.reversible hydrogen electrode)to attain 10 mA/cm^(2) for oxygen evolution reaction(OER)and urea oxidation reaction(UOR),respectively.In addition,the overall urea electrolysis drives 10 mA/cm^(2) at a comparatively low voltage of 1.52 V(vs.RHE)that is 110 mV lower than that of overall water electrolysis,as well as exhibits excellent stability over 20 h.This work strategizes a multi-shell-structured electrocatalyst with multi-compositions and explores its applications in a sustainable combination of hydrogen production and sewage remediation.