Tri-n-butyl phosphate(TBP)dissolved in kerosene was chosen as extractant for lithium from a modelbrine having high magnesium-to-lithium ratio and ferric chloride was added to the system.The influences of con-tact ti...Tri-n-butyl phosphate(TBP)dissolved in kerosene was chosen as extractant for lithium from a modelbrine having high magnesium-to-lithium ratio and ferric chloride was added to the system.The influences of con-tact time,concentration of the extractant,concentrations of some salts(Mg<sup>2+</sup>, Na<sup>+</sup>,K<sup>+</sup>)in the solution,acid-ity of hydrochloric acid and extraction temperature on the exttaction of lithium with TBP-kerosene system werestudied.The suitable extraction conditions were found to be:contact time not any less than 20min;at 20-25C;[Fe<sup>+3</sup>]/[Li<sup>+</sup>]about 1.5-2.0;TBP concentration 50%-70%;[MgCl<sub>2</sub>]exceeding 3 mol·L<sup>-1</sup>;pH about 2;while most sodium and potassium salts in the aqueous phase should be removed before the extraction.展开更多
Studies have been made on the extraction of Zn and Cd by TBP(tri-n-butyl phosphate) from diluent hydrochloric acid solutions of soldium chloride.The experiments show that the species extracted from diluent HCI solutio...Studies have been made on the extraction of Zn and Cd by TBP(tri-n-butyl phosphate) from diluent hydrochloric acid solutions of soldium chloride.The experiments show that the species extracted from diluent HCI solutions of NaCl appear to be predominantly ZnCl_2· 2TBP and CdCl_2·2TBP.For Cd,at lower acidities,anionic complexes of the type H_2CdCl_3 are also extracted.As the acidity is increased,H_2CdCl_4 appear to be predominant complexes in organic phase.For Zn,the acidocomplexes of the type HZnCl_3 appear in organ- ic phase after the acidity of solutions reaching a certain value([HCl]>0.1 mol/L). Furthermore,the ultraviolet absorption spectra of both aqueous and organic phases have been studied,and the infrared spectra of the organic phases have been exomined.The extraction mechanism and temperature effect are also discussed.展开更多
Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation m...Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds.展开更多
Tributyl phosphate(TBP) was employed for the Bi(Ⅲ) extraction from hydrochloric acid medium.The effects of extraction time and material concentration were examined.The replacement mechanism between the anion(Cl^-) an...Tributyl phosphate(TBP) was employed for the Bi(Ⅲ) extraction from hydrochloric acid medium.The effects of extraction time and material concentration were examined.The replacement mechanism between the anion(Cl^-) and TBP was proposed for extraction.The results show the species extracted into the organic phase were found to be mainly BiCl_3·x TBP(x=2 or 3).Thermodynamic parameters of the extraction reaction were obtained from the thermodynamics analysis,which illustrates that higher temperatures show a negative effect on the extraction.Extraction isotherm was obtained with 2.16 mol/L TBP for a typical solution containing 0.1 mol/L of bismuth and 1.0 mol/L of hydrochloric acid.About 98.5 % of bismuth has been extracted from the leaching solution under the optimum condition.Moreover,oxalate was explored as a precipitation stripping agent for BiCl_3·x TBP(x=2 or 3) complexes,by which Bi(Ⅲ) was stripped in the form of Bi_2(C_2O_4)_3·7H_2O.A stripping efficiency of 99.3% was obtained in only one stage at the phase ratio of 1 and TBP also could be recycled.Therefore,the method is an efficient,effective and highly selective approach to extract Bi(Ⅲ) and to recover metal bismuth.展开更多
The present work describes the amount of Di-n- butyl phosphate (DBP) produced when PUREX solvent (30%tri-n-butyl phosphate (TBP) mixed with 70% hydrocarbon diluent) is exposed to intensive radiolytic and chemical at- ...The present work describes the amount of Di-n- butyl phosphate (DBP) produced when PUREX solvent (30%tri-n-butyl phosphate (TBP) mixed with 70% hydrocarbon diluent) is exposed to intensive radiolytic and chemical at- tack during the separation of uranium and plutonium from fission products of FBTR mixed carbide fuel reprocessing solution. DBP is the major degradation product of Tri-n-butyl phosphate (TBP). Amount of DBP formed in the lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solutions were analyzed by Gas Chromatographic technique. The method is based on the preparation of diazo methane and conversion of non-volatile Di-n-butyl phosphate in to volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatography (GC). A calibration graph was made for DBP over a concentration in the range from 200 to 1800 ppm with correlation coefficient of 0.99587 and RSD 1.2%. The degraded 30% TBP-NPH solvent loaded with heavy metal ions like uranium was analyzed after repeated use and results are compared with standard ion chromatographic technique. A column comparison study to select of proper gas chromatographic column for the separation of DBP from other components in a single aliquot of injection is also examined.展开更多
在设计的新型微孔分散轮盘塔中,采用微孔分散技术对萃取过程进行强化传质,以磷酸/水/TBP+煤油为实验体系,研究了该萃取设备净化湿法磷酸的萃取特性。考察了孔径为75μm的微孔网分散轮盘在不同相比、转速、停留时间下对萃取率和反萃取率...在设计的新型微孔分散轮盘塔中,采用微孔分散技术对萃取过程进行强化传质,以磷酸/水/TBP+煤油为实验体系,研究了该萃取设备净化湿法磷酸的萃取特性。考察了孔径为75μm的微孔网分散轮盘在不同相比、转速、停留时间下对萃取率和反萃取率的影响,并在不同转速下与普通转盘塔进行了对比,结果表明:微分散轮盘比普通转盘有较好的分散效果,其中转速对其有明显影响;萃取的适宜条件为转速250 r min 1,相比4:1,停留时间10 min,磷酸萃取率可达54.92%;当转速250 r min 1,相比为6,停留时间15 min,磷酸反萃率可达85.33%。展开更多
文摘Tri-n-butyl phosphate(TBP)dissolved in kerosene was chosen as extractant for lithium from a modelbrine having high magnesium-to-lithium ratio and ferric chloride was added to the system.The influences of con-tact time,concentration of the extractant,concentrations of some salts(Mg<sup>2+</sup>, Na<sup>+</sup>,K<sup>+</sup>)in the solution,acid-ity of hydrochloric acid and extraction temperature on the exttaction of lithium with TBP-kerosene system werestudied.The suitable extraction conditions were found to be:contact time not any less than 20min;at 20-25C;[Fe<sup>+3</sup>]/[Li<sup>+</sup>]about 1.5-2.0;TBP concentration 50%-70%;[MgCl<sub>2</sub>]exceeding 3 mol·L<sup>-1</sup>;pH about 2;while most sodium and potassium salts in the aqueous phase should be removed before the extraction.
文摘Studies have been made on the extraction of Zn and Cd by TBP(tri-n-butyl phosphate) from diluent hydrochloric acid solutions of soldium chloride.The experiments show that the species extracted from diluent HCI solutions of NaCl appear to be predominantly ZnCl_2· 2TBP and CdCl_2·2TBP.For Cd,at lower acidities,anionic complexes of the type H_2CdCl_3 are also extracted.As the acidity is increased,H_2CdCl_4 appear to be predominant complexes in organic phase.For Zn,the acidocomplexes of the type HZnCl_3 appear in organ- ic phase after the acidity of solutions reaching a certain value([HCl]>0.1 mol/L). Furthermore,the ultraviolet absorption spectra of both aqueous and organic phases have been studied,and the infrared spectra of the organic phases have been exomined.The extraction mechanism and temperature effect are also discussed.
基金Project(50774094) supported by the National Natural Science Foundation of ChinaProject(2010CB630905) supported by the National Basic Research Program of China
文摘Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds.
基金Project(2011AA061002)supported by the High-Tech Research and Development Program of ChinaProject(2010SK2010)supported by the Key Program of Science and Technology of Hunan Province,ChinaProject supported by the Hunan Nonferrous Metals Fund,China
文摘Tributyl phosphate(TBP) was employed for the Bi(Ⅲ) extraction from hydrochloric acid medium.The effects of extraction time and material concentration were examined.The replacement mechanism between the anion(Cl^-) and TBP was proposed for extraction.The results show the species extracted into the organic phase were found to be mainly BiCl_3·x TBP(x=2 or 3).Thermodynamic parameters of the extraction reaction were obtained from the thermodynamics analysis,which illustrates that higher temperatures show a negative effect on the extraction.Extraction isotherm was obtained with 2.16 mol/L TBP for a typical solution containing 0.1 mol/L of bismuth and 1.0 mol/L of hydrochloric acid.About 98.5 % of bismuth has been extracted from the leaching solution under the optimum condition.Moreover,oxalate was explored as a precipitation stripping agent for BiCl_3·x TBP(x=2 or 3) complexes,by which Bi(Ⅲ) was stripped in the form of Bi_2(C_2O_4)_3·7H_2O.A stripping efficiency of 99.3% was obtained in only one stage at the phase ratio of 1 and TBP also could be recycled.Therefore,the method is an efficient,effective and highly selective approach to extract Bi(Ⅲ) and to recover metal bismuth.
文摘The present work describes the amount of Di-n- butyl phosphate (DBP) produced when PUREX solvent (30%tri-n-butyl phosphate (TBP) mixed with 70% hydrocarbon diluent) is exposed to intensive radiolytic and chemical at- tack during the separation of uranium and plutonium from fission products of FBTR mixed carbide fuel reprocessing solution. DBP is the major degradation product of Tri-n-butyl phosphate (TBP). Amount of DBP formed in the lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solutions were analyzed by Gas Chromatographic technique. The method is based on the preparation of diazo methane and conversion of non-volatile Di-n-butyl phosphate in to volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatography (GC). A calibration graph was made for DBP over a concentration in the range from 200 to 1800 ppm with correlation coefficient of 0.99587 and RSD 1.2%. The degraded 30% TBP-NPH solvent loaded with heavy metal ions like uranium was analyzed after repeated use and results are compared with standard ion chromatographic technique. A column comparison study to select of proper gas chromatographic column for the separation of DBP from other components in a single aliquot of injection is also examined.
文摘在设计的新型微孔分散轮盘塔中,采用微孔分散技术对萃取过程进行强化传质,以磷酸/水/TBP+煤油为实验体系,研究了该萃取设备净化湿法磷酸的萃取特性。考察了孔径为75μm的微孔网分散轮盘在不同相比、转速、停留时间下对萃取率和反萃取率的影响,并在不同转速下与普通转盘塔进行了对比,结果表明:微分散轮盘比普通转盘有较好的分散效果,其中转速对其有明显影响;萃取的适宜条件为转速250 r min 1,相比4:1,停留时间10 min,磷酸萃取率可达54.92%;当转速250 r min 1,相比为6,停留时间15 min,磷酸反萃率可达85.33%。