We aimed to develop a process technology for constructing a carbon-based micro-electromechanical system that does not require a high-temperature and high-energy process. A HOPG (highly oriented pyrolytic graphite) c...We aimed to develop a process technology for constructing a carbon-based micro-electromechanical system that does not require a high-temperature and high-energy process. A HOPG (highly oriented pyrolytic graphite) crystal microsheet was prepared by exfoliation. Cantilevers and doubly clamped beams were patterned using a photoresist. The HOPG microsheet was attached by using a tantalum layer. We fabricated cantilevers and a doubly clamped beam by controlling the thickness of the HOPG microsheet and then measured the first resonance frequency. The measurements suggest a need to improve the stiffness of the beam.展开更多
文摘We aimed to develop a process technology for constructing a carbon-based micro-electromechanical system that does not require a high-temperature and high-energy process. A HOPG (highly oriented pyrolytic graphite) crystal microsheet was prepared by exfoliation. Cantilevers and doubly clamped beams were patterned using a photoresist. The HOPG microsheet was attached by using a tantalum layer. We fabricated cantilevers and a doubly clamped beam by controlling the thickness of the HOPG microsheet and then measured the first resonance frequency. The measurements suggest a need to improve the stiffness of the beam.