Given a set of triangles and a rectangle container, the triangle packing problem is to determine if these triangles can be placed into the container without overlapping. Triangle packing problem is a special case of p...Given a set of triangles and a rectangle container, the triangle packing problem is to determine if these triangles can be placed into the container without overlapping. Triangle packing problem is a special case of polygon packing problem and also NP-hard, so it is unlikely that an efficient and exact algorithm can be developed to solve this problem. In this paper, a new concept of rigid placement is proposed, based on which a discrete solution space called rigid solution space is constructed. Each solution in the rigid solution space can be built by continuously applying legal rigid placements one by one until all the triangles are placed into the rectangle container without overlapping. The proposed Least-Destruction-First (LDF) strategy determines which rigid placement has the privilege to go into the rectangle container. Based on this, a heuristic algorithm is proposed to solve the problem. Combining Least-Destruction-First strategy with backtracking, the corresponding backtracking algorithm is proposed. Computa- tional results show that our proposed algorithms are efficient and robust. With slight modification, these techniques can be con- veniently used for solving polygon packing problem.展开更多
文摘Given a set of triangles and a rectangle container, the triangle packing problem is to determine if these triangles can be placed into the container without overlapping. Triangle packing problem is a special case of polygon packing problem and also NP-hard, so it is unlikely that an efficient and exact algorithm can be developed to solve this problem. In this paper, a new concept of rigid placement is proposed, based on which a discrete solution space called rigid solution space is constructed. Each solution in the rigid solution space can be built by continuously applying legal rigid placements one by one until all the triangles are placed into the rectangle container without overlapping. The proposed Least-Destruction-First (LDF) strategy determines which rigid placement has the privilege to go into the rectangle container. Based on this, a heuristic algorithm is proposed to solve the problem. Combining Least-Destruction-First strategy with backtracking, the corresponding backtracking algorithm is proposed. Computa- tional results show that our proposed algorithms are efficient and robust. With slight modification, these techniques can be con- veniently used for solving polygon packing problem.