In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negativ...In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negatively lower bounded is of finite topological type provided that the conjugate radius is bounded from below by a positive constant and its Excess is bounded by some function of its conjugate radius, which improves some results in [4].展开更多
基金Supported by the National Natural Science Foundation of China(10371047)
文摘In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negatively lower bounded is of finite topological type provided that the conjugate radius is bounded from below by a positive constant and its Excess is bounded by some function of its conjugate radius, which improves some results in [4].