期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Scattered Data Interpolation Using Cubic Trigonometric Bézier
1
作者 Ishak Hashim Nur Nabilah Che Draman +2 位作者 Samsul Ariffin Abdul Karim Wee Ping Yeo Dumitru Baleanu 《Computers, Materials & Continua》 SCIE EI 2021年第10期221-236,共16页
This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we... This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles. 展开更多
关键词 Cubic trigonometric Bézier triangular patches C1sufficient condition scattered data interpolation
下载PDF
三角B-B曲面在非结构网格生成中的应用
2
作者 杨佃亮 李颖晨 丰镇平 《工程热物理学报》 EI CAS CSCD 北大核心 2006年第z1期89-92,共4页
基于生成非结构化网格的Delaunay三角形化方法,应用三次三角Bernstein-Bézier曲面来控制网格点的分布情况。对于给定边界,利用三次非均匀B样条进行边界的拟合及重新离散。对初始化形成的Delaunay三角形,应用三次三角Bernstein-B... 基于生成非结构化网格的Delaunay三角形化方法,应用三次三角Bernstein-Bézier曲面来控制网格点的分布情况。对于给定边界,利用三次非均匀B样条进行边界的拟合及重新离散。对初始化形成的Delaunay三角形,应用三次三角Bernstein-Bézier曲面来计算位于其中的点的长度标尺,通过对三角Bernstein-Bézier曲面边界点的定义来控制三角形内长度标尺的分布。对复杂通道网格剖分的实例表明,此方法可以很好地控制内部网格点的分布情况。 展开更多
关键词 非结构网格 网格生成 长度标尺 三角bernstein-bézier曲面
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部