We give a brief discussion of some of the contributions of Peter Lax to Com- putational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 198...We give a brief discussion of some of the contributions of Peter Lax to Com- putational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 1983 HLL Riemann solver. We de- velop two-dimensional Lax-Friedrichs and Lax-Wendroff schemes for the Lagrangian form of the Euler equations on triangular grids. We apply a composite scheme that uses a Lax- Friedrichs time step as a dissipative filter after several Lax-Wendroff time steps. Numerical results for Noh's infinite strength shock problem, the Sedov blast wave problem, and the Saltzman piston problem are presented.展开更多
基金performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.DE-AC52-06NA25396supported in part by the Czech Science Foundation GrantP205/10/0814the Czech Ministry of Education grants MSM 6840770022 and LC528
文摘We give a brief discussion of some of the contributions of Peter Lax to Com- putational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 1983 HLL Riemann solver. We de- velop two-dimensional Lax-Friedrichs and Lax-Wendroff schemes for the Lagrangian form of the Euler equations on triangular grids. We apply a composite scheme that uses a Lax- Friedrichs time step as a dissipative filter after several Lax-Wendroff time steps. Numerical results for Noh's infinite strength shock problem, the Sedov blast wave problem, and the Saltzman piston problem are presented.