-
题名露采矿山宕口坡面表面积计算方法探讨
被引量:2
- 1
-
-
作者
赵立科
何朝津
杨礼平
刘晓栋
薛文勇
-
机构
江苏省地质调查研究院
-
出处
《江苏地质》
2007年第3期285-287,共3页
-
文摘
介绍了露采矿山整治中山体坡面表面积的两种计算方法:剖面法和小三角锁法。剖面法是把宕口坡表面分割成无数个小梯形进行计算表面积的一种方法。小三角锁法是通过对宕口坡表面数字化测量,根据测量数据建立数字高程模型,并在表面建立小三角锁,对所有小三角的面积累加得到面积的一种方法。小三角锁法大大提高了计算的准确度和效率。
-
关键词
坡面表面积计算
剖面法
小三角锁法
数字高程模型
坡度分析
露采矿山整治
-
Keywords
Computation for surface area
Section method
triangular mesh
Digital elevation model
Gradient analysis
Rectification for open pit mines
-
分类号
TD176
[矿业工程—矿山地质测量]
TD177.3
[矿业工程—矿山地质测量]
-
-
题名三角形菱柱表面积法在材料断面分形维数测算中的应用
- 2
-
-
作者
吴成宝
魏静
梁基照
-
机构
广州民航职业技术学院飞机维修工程学院
华南理工大学机械与汽车工程学院
-
出处
《材料导报(纳米与新材料专辑)》
EI
CAS
2016年第1期180-183,共4页
-
文摘
分形维数是材料断面特征的定量表征参数之一,同时也是判断材料断裂机理的依据,在材料力学中具有非常重要的意义。为了准确和有效地测算材料断面分形维数,引入三角形菱柱表面积法(TPSAM),并根据其原理编写程序,在Matlab 7.1运行环境条件下实现了该算法,最后采用实例对该算法作了测算。结果表明,该程序简单明了,便于操作;所求算的表面分形维数介于2~3之间,准确度高,可推广使用。
-
关键词
三角形菱柱表面积法
分形
分形维数
-
Keywords
triangular prism surface area method(tpsam)
fractal
fractal dimension
-
分类号
TP312
[自动化与计算机技术—计算机软件与理论]
-
-
题名表面等离子体无掩膜干涉光刻系统的数值分析(英文)
被引量:5
- 3
-
-
作者
董启明
郭小伟
-
机构
电子科技大学光电信息学院
-
出处
《光子学报》
EI
CAS
CSCD
北大核心
2012年第5期558-564,共7页
-
基金
The National Natural Science Foundation of China(No.60906052)
-
文摘
表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
-
关键词
干涉光刻
表面等离子体激元
克莱舒曼结构
-
Keywords
Interference lithography
surface plasmon plortiton
Kretschmann structureCLCN: TN305.7 Document Code:A Article ID:1004-4213(2012)05-0558-70 IntroductionThere is a growing interest in exploring new nanolithography techniques with high efficiency,low cost and large-area fabrication to fabricate nanoscale devices for nanotechnology applications.Conventional photolithography has remained a useful microfabrication technology because of its ease of repetition and suitability for large-area fabrication[1].The diffraction limit,however,restricts the fabrication scale of photolithography[2].Potential solutions that have actually been pursued require increasingly shorter illumination wavelengths for replicating smaller structures.It is becoming more difficult and complicated to use the short optical wavelengths to reach the desired feature sizes.Other methods such as electron beam lithography[3],ion beam lithography[4],scanning probe lithography[5],nanoimprint lithography(NIL)[6],and evanescent near-field optical lithography(ENFOL)[7] have been developed in order to achieve nanometer-scale features.As we know,the former three techniques need scanning and accordingly are highly inefficient.In NIL,the leveling of the imprint template and the substrate during the printing process,which determines the uniformity of the imprint result,is a challenging issue of this method.ENFOL have the potential to produce subwavelength structures with high efficiency,but it encounters the fact that the evanescent field decays rapidly through the aperture,thus attenuating the transmission intensity at the exit plane and limiting the exposure distance to the scale of a few tens of nanometers from the mask.In recent years,the use of surface-plasmon polaritons(SPPs) instead of photons as an exposure source was rapidly developed to fabricate nanoscale structures.SPPs are characterized by its near field enhancement so that SPP-based lithography can greatly extend exposure depth and improve pattern contrast.Grating-assisted SPP interference,such as SPP resonant interference nanolithography[8] and SPP-assisted interference nanolithography[9],achieved a sub-100nm interference pattern.The techniques,however,are necessary to fabricate a metal grating with a very fine period and only suitable for small-area interference.To avoid the fabrication of the metal grating,a prism-based SPP maskless interference lithography was proposed in 2006,which promises good lithography performance.The approach offers potential to achieve sub-65nm and even sub-32nm feature sizes.However,the structure parameters are always not ideal in a real system.One wants to know how much influence the parameter variations have on the pattern resolution and what variations of the parameters are allowed to obtain an effective interference.Thus,it is necessary to explore the parameter spaces.1 SPP maskless interference lithography systemThe SPP maskless interference lithography system is shown in Fig.1.A p-polarized laser is divided into two beams by a grating splitter,and then goes into the prism-based multilayer system.Under a given condition,the metal film can exhibit collective electron oscillations known as SPPs which are charge density waves that are characterized by intense electromagnetic fields confined to the metallic surface.If the metal layer Fig.1 Schematic for SPP maskless interference lithography systemis sufficiently thin,plasma waves at both metal interfaces are coupled,resulting in symmetric and antisymmetric SPPs.When the thickness h of metal film,dielectric constant ε1,ε2,ε3 of medium above,inside,below the metal film are specified,the coupling equation is shown as followstanh(S2h)(ε1ε3S22+ε22S1S3)+(ε1ε2S2S3+ε2ε3S1S2)=0
-
分类号
TN305.7
[电子电信—物理电子学]
-