The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Ce...The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.展开更多
In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ...The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.展开更多
The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petrolife...The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016).展开更多
1.Objective In the past decade,a group of medium to giant lead-zinc deposits,represented by Huoshaoyun,Sachakou,and Yuanbaoling,have been discovered in the Aksai Chin region of Karakoram,Xinjiang.They are all located ...1.Objective In the past decade,a group of medium to giant lead-zinc deposits,represented by Huoshaoyun,Sachakou,and Yuanbaoling,have been discovered in the Aksai Chin region of Karakoram,Xinjiang.They are all located in the Mesozoic carbonate and clastic rock formations.The Sachakou leadzinc mining area is adjacent to the northwest of the Huoshaoyun lead-zinc mining area and is in the same stratigraphic layer as Huoshaoyun.Although many scholars have been arguing about the type and age of Huoshaoyun lead-zinc mineralization,few scholars have paid attention to the classification of the ore-bearing strata in the area.The stratigraphy of the Lower Permian Shenxianwan Group to the Upper Cretaceous Tielongtan Group is exposed in the Sachakou area of Karakorum,Xinjiang,however,the Late Permian-Early Triassic stratigraphy is missing(Fig.1a).Due to the harsh natural conditions in the area and the low level of work,the stratigraphic delineation is not exhaustive,and the regional lithology is dominated by carbonates and clastic rocks,which makes it difficult to identify the age of the regional lithology and causes problems for the exploration and research of lead-zinc in the area.展开更多
Perleididae is a group of stem neopterygian fishes known only from the Triassic.Here,we report the discovery of a new perleidid,Teffichthys wui sp.nov.,based on six well-preserved specimens from the late Smithian(Olen...Perleididae is a group of stem neopterygian fishes known only from the Triassic.Here,we report the discovery of a new perleidid,Teffichthys wui sp.nov.,based on six well-preserved specimens from the late Smithian(Olenekian,Early Triassic)marine deposits of Jurong,Jiangsu and Chaohu,Anhui,China.This new discovery documents the third and youngest species of Teffichthys,which is slightly younger than the Dienerian(Induan)T.elegans from Guizhou and the early Smithian T.madagascariensis from Madagascar.The new species shows diagnostic features of Teffichthys(presence of a spiracular,38-41 lateral line scales,and no more than three epaxial rays in the caudal fin)but differs from T.madagascariensis and T.elegans in some autapomorphies(e.g.,a horizontal opercle/subopercle contact and smooth scales with a nearly straight posterior margin).The diagnostic features for the genus Teffichthys and the family Perleididae are emended based on detailed comparisons of the new taxon with other perleidids.The phylogenetic relationships of perleidids with other stem neopterygians are discussed using a cladistic approach,and the results provide new insights into the phylogeny and classification of main stem neopterygian clades.展开更多
Several therocephalian species,mainly represented by cranial material from the late Permian,have been reported from China in recent years.Here we describe a tiny new baurioid therocephalian,Jiucaiyuangnathus confusus ...Several therocephalian species,mainly represented by cranial material from the late Permian,have been reported from China in recent years.Here we describe a tiny new baurioid therocephalian,Jiucaiyuangnathus confusus gen.et sp.nov.,from the Jiucaiyuan Formation,Xinjiang,China.The new taxon is represented by a partial snout with occluded partial lower jaw and two postcranial skeletons.Although juvenile in stage,the new species is diagnosed by the following features:round pit in middle of lateral surface of maxilla;lacrimal contact nasal;fossa for dentary tooth on the posterior end of the premaxilla,lateral to the anterior choana;two small vertical triangular ridges extending dorsally and ventrally on the vomerine anterior portion,and bordering a thin vomerine foramen laterally;anterior projection of the lateral part of the frontal on the nasal;symphyseal region of the dentary projected anteriorly;5 upper premaxillary teeth,upper and lower canines absent,diastema between the last premaxillary upper incisor and first maxillary tooth present,no diastema separating anterior from posterior dentition in the mandible,10 maxillary teeth and 12 dentary teeth,posterior postcanine expands mesiodistally,having a main large cusps and tiny anterior and posterior accessory cusps in line;neural arches of the atlas fused by the neural spine,neural spine of the axis projected posteriorly,procoracoid foramen lies between procoracoid and scapula.Features of the dentition resembles those of the small baurioid Ericiolacerta parva from South Africa and Silphedosuchus orenburgensis from Russia.The specimens provide the rare opportunity to know in detail the postcranial skeleton of baurioids.展开更多
The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existenc...The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.展开更多
In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is belie...In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is believed that the Upper Permian–Lower Triassic can be regarded as a long-term base-level cycle.Based on drilling data,characteristics of the lithology–electric property combination cyclicity,and the special lithology,the long-term base-level cycle was divided into five medium-term base-level cycles(MC1–MC5).On this basis,the Permian–Triassic sedimentary systems and their filling model were analyzed in accordance with the change of base-level cycle and transition of sedimentary environment,as well as characteristics of the drilling sedimentary facies and seismic facies.The results show that there were six sedimentary systems(fluvial,delta,tidal flat,open platform,restricted platform,and continental shelf)developed in the Upper Permian–Lower Triassic,the sedimentary systems were distributed such that the water was deep in the northwest and shallow in the southeast,and there were two base-level cycle filling models(a relatively stable tidal flat facies and a rapidly transgressive continental shelf facies to stable platform facies)developed in the Upper Permian–Lower Triassic.These models can provide a basis for evaluation of the Mesozoic–Paleozoic hydrocarbon geology in the South Yellow Sea Basin.展开更多
The thrust nappe played an important role in the Mesozoic tectonic evolution of the middle part of the Central Asian Orogenic Belt(CAOB).However,the timing,structural style and kinematic processes of the thrust nappe ...The thrust nappe played an important role in the Mesozoic tectonic evolution of the middle part of the Central Asian Orogenic Belt(CAOB).However,the timing,structural style and kinematic processes of the thrust nappe remain controversial,particularly the detail of the thrust nappe in the Guaizihu region(110 km east of Ejinaq).In this study,we investigate new field mapping,seismic sections,geochronology and low-temperature thermochronometric dating to provide constraints on the history of this thrust nappe in the Chaheilingashun area(northwestern Guaizihu region).The field mapping,seismic sections and structural analysis reveal that the autochthonous system had developed a series of strong fold structures in the upper Permian strata.The allochthonous system mainly contains Devonian monzogranite(U-Pb age,ranges from 386.7 to 389.0 Ma)and Meso–Neoproterozoic schists(the maximum depositional age,~880 Ma),which were thrust upon the upper Permian strata during Middle to Late Triassic.Based on similar rocks,geochronological dating and the Yagan thrust,we suggest that the postulated root zone of this allochthon might have originated from the Huhetaoergai area(40–60 km northwest of the study area).The geochronological results reveal that the lower age limit of this thrust nappe is constrained by the Lower–Middle Triassic syntectonic sediments(tuffaceous sandstone,~247 Ma),which is the sedimentary response of the fold structure.,The timing of the termination of this thrust nappe is defined by the cooling age(^(40)Ar/^(39)Ar data,217–211 Ma)of the Devonian monzogranite and Meso–Neoproterozoic schists.Thus,we consider this thrust event in the study area to potentially have occurred in the period from 247 Ma to 211 Ma,which may represent the tectonic response to the closure of the Paleo-Asian Ocean.展开更多
Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southw...Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs.展开更多
Mesozoic marine shale oil was found in the Qiangtang Basin by a large number of hydrocarbon geological surveys and shallow drilling sampling.Based on systematic observation and experimental analysis of outcrop and cor...Mesozoic marine shale oil was found in the Qiangtang Basin by a large number of hydrocarbon geological surveys and shallow drilling sampling.Based on systematic observation and experimental analysis of outcrop and core samples,the deposition and development conditions and characteristics of marine shale are revealed,the geochemical and reservoir characteristics of marine shale are evaluated,and the layers of marine shale oil in the Mesozoic are determined.The following geological understandings are obtained.First,there are two sets of marine organic-rich shales,the Lower Jurassic Quse Formation and the Upper Triassic Bagong Formation,in the Qiangtang Basin.They are mainly composed of laminated shale with massive mudstone.The laminated organic-rich shale of the Quse Formation is located in the lower part of the stratum,with a thickness of 50–75 m,and mainly distributed in southern Qiangtang Basin and the central-west of northern Qiangtang Basin.The laminated organic-rich shale of the Bagong Formation is located in the middle of the stratum,with a thickness of 250–350 m,and distributed in both northern and southern Qiangtang Basin.Second,the two sets of laminated organic-rich shales develop foliation,and various types of micropores and microfractures.The average content of brittle minerals is 70%,implying a high fracturability.The average porosity is 5.89%,indicating good reservoir physical properties to the level of moderate–good shale oil reservoirs.Third,the organic-rich shale of the Quse Formation contains organic matters of types II1 and II2,with the average TOC of 8.34%,the average content of chloroform bitumen'A'of 0.66%,the average residual hydrocarbon generation potential(S1+S2)of 29.93 mg/g,and the Ro value of 0.9%–1.3%,meeting the standard of high-quality source rock.The organic-rich shale of the Bagong Formation contains mixed organic matters,with the TOC of 0.65%–3.10%and the Ro value of 1.17%–1.59%,meeting the standard of moderate source rock.Fourth,four shallow wells(depth of 50–250 m)with oil shows have been found in the organic shales at 50–90 m in the lower part of the Bagong Formation and 30–75 m in the middle part of the Quse Formation.The crude oil contains a high content of saturated hydrocarbon.Analysis and testing of outcrop and shallow well samples confirm the presence of marine shale oil in the Bagong Formation and the Quse Formation.Good shale oil intervals in the Bagong Formation are observed in layers 18–20 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 206.7 m thick,with the maximum and average(S0+S1)of 1.92 mg/g and 1.81 mg/g,respectively.Good shale oil intervals in the Quse Formation are found in layers 4–8 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 58.8 m thick,with the maximum and average(S0+S1)of 6.46 mg/g and 2.23 mg/g,respectively.展开更多
In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of...In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of Middle Triassic,recording a significant discovery.However,the hydrocarbon accumulation in marl remains unclear,which restricts the selection and deployment of exploration area.Focusing on Well CT1,the hydrocarbon accumulation characteristics of Lei-32 marl are analyzed to clarify the potential zones for exploration.The following findings are obtained.First,according to the geochemical analysis of petroleum and source rocks,oil and gas in the Lei-32 marl of Well CT1 are originated from the same marl.The marl acts as both source rock and reservoir rock.Second,the Lei-32 marl in central Sichuan Basin is of lagoonal facies,with a thickness of 40–130 m,an area of about 40000 km^(2),a hydrocarbon generation intensity of(4–12)×10^(8) m^(3)/km^(2),and an estimated quantity of generated hydrocarbons of 25×10^(12) m^(3).Third,the lagoonal marl reservoirs are widely distributed in central Sichuan Basin.Typically,in Xichong–Yilong,Ziyang–Jianyang and Moxi South,the reservoirs are 20–60 m thick and cover an area of 7500 km^(2).Fourth,hydrocarbons in the lagoonal marl are generated and stored in the Lei-32 marl,which means that marl serves as both source rock and reservoir rock.They represent a new type of unconventional resource,which is worthy of exploring.Fifth,based on the interpretation of 2D and 3D seismic data from central Sichuan Basin,Xichong and Suining are defined as favorable prospects with estimated resources of(2000–3000)×10^(8) m^(3).展开更多
The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of...The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion effi...The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.展开更多
Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,d...Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.展开更多
Kannemeyeriiformes were dominated tetrapods in the Middle Triassic terrestrial faunae of China.Although abundant materials of Sinokannemeyeria have been collected, their postcranial morphology information is not well ...Kannemeyeriiformes were dominated tetrapods in the Middle Triassic terrestrial faunae of China.Although abundant materials of Sinokannemeyeria have been collected, their postcranial morphology information is not well studied, especially the juveniles. This paper presents a description of an articulated Sinokannemeyeria skeleton from the Middle Triassic Ermaying Formation and reports the histological microstructure of its femur. This specimen represents a late-stage juvenile based on the histological information. For the first time, this specimen offers insights into the postcrania information of juvenile Sinokannemeyeria.展开更多
基金supported by the National Key Research and Development Project(Grant No.2018YFC0603700)research grants from the China Geological Survey(Grant Nos.DD20230408,DD20190011,DD20191011 and DD20221824)+1 种基金the Fundamental Research Funds from the Chinese Academy of Geological Sciences(Grant No.JKY202011)the Key Laboratory of Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources(Grant No.2023YFL23)。
文摘The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
文摘The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.
基金supports from the International Continental Scientific Drilling Programfunded by the National Natural Science Foundation of China(Grant Nos.41790453,41472304,42102129,42102135 and 41972313)+2 种基金Natural Science Foundation of Jilin Province(Grant No.20170101001JC)the National Key Research&Development Program of China(Grant No.2019YFC0605402)China Geological Survey(Grant No.DD20189702)。
文摘The Songliao Basin(SLB)covers an area of approximately 260,000 km2in northeastern Asia and preserves a continuous and complete Cretaceous terrestrial record(Wang et al.,2021).The region is the most important petroliferous sedimentary basin in China because of its continual annual oil and gas equivalent production of tens of millions of tons(ca.220–440 million barrels per year)since 1959.The SLB was previously thought to have developed on Hercynian basement and accumulated continuous sedimentary deposits during the Late Jurassic and Cretaceous(Wan et al.,2013;Wang et al.,2016).
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research(2021QZKK0303)the Natural Science Basic Research Program of Shaanxi(2020JQ-440 and 2021JQ-327)+1 种基金the Major Science and Technology Project of Xinjiang Uygur Autonomous Region(2021A03001-2)the projects of the China Geological Survey(DD20230333 and DD20230048).
文摘1.Objective In the past decade,a group of medium to giant lead-zinc deposits,represented by Huoshaoyun,Sachakou,and Yuanbaoling,have been discovered in the Aksai Chin region of Karakoram,Xinjiang.They are all located in the Mesozoic carbonate and clastic rock formations.The Sachakou leadzinc mining area is adjacent to the northwest of the Huoshaoyun lead-zinc mining area and is in the same stratigraphic layer as Huoshaoyun.Although many scholars have been arguing about the type and age of Huoshaoyun lead-zinc mineralization,few scholars have paid attention to the classification of the ore-bearing strata in the area.The stratigraphy of the Lower Permian Shenxianwan Group to the Upper Cretaceous Tielongtan Group is exposed in the Sachakou area of Karakorum,Xinjiang,however,the Late Permian-Early Triassic stratigraphy is missing(Fig.1a).Due to the harsh natural conditions in the area and the low level of work,the stratigraphic delineation is not exhaustive,and the regional lithology is dominated by carbonates and clastic rocks,which makes it difficult to identify the age of the regional lithology and causes problems for the exploration and research of lead-zinc in the area.
文摘Perleididae is a group of stem neopterygian fishes known only from the Triassic.Here,we report the discovery of a new perleidid,Teffichthys wui sp.nov.,based on six well-preserved specimens from the late Smithian(Olenekian,Early Triassic)marine deposits of Jurong,Jiangsu and Chaohu,Anhui,China.This new discovery documents the third and youngest species of Teffichthys,which is slightly younger than the Dienerian(Induan)T.elegans from Guizhou and the early Smithian T.madagascariensis from Madagascar.The new species shows diagnostic features of Teffichthys(presence of a spiracular,38-41 lateral line scales,and no more than three epaxial rays in the caudal fin)but differs from T.madagascariensis and T.elegans in some autapomorphies(e.g.,a horizontal opercle/subopercle contact and smooth scales with a nearly straight posterior margin).The diagnostic features for the genus Teffichthys and the family Perleididae are emended based on detailed comparisons of the new taxon with other perleidids.The phylogenetic relationships of perleidids with other stem neopterygians are discussed using a cladistic approach,and the results provide new insights into the phylogeny and classification of main stem neopterygian clades.
文摘Several therocephalian species,mainly represented by cranial material from the late Permian,have been reported from China in recent years.Here we describe a tiny new baurioid therocephalian,Jiucaiyuangnathus confusus gen.et sp.nov.,from the Jiucaiyuan Formation,Xinjiang,China.The new taxon is represented by a partial snout with occluded partial lower jaw and two postcranial skeletons.Although juvenile in stage,the new species is diagnosed by the following features:round pit in middle of lateral surface of maxilla;lacrimal contact nasal;fossa for dentary tooth on the posterior end of the premaxilla,lateral to the anterior choana;two small vertical triangular ridges extending dorsally and ventrally on the vomerine anterior portion,and bordering a thin vomerine foramen laterally;anterior projection of the lateral part of the frontal on the nasal;symphyseal region of the dentary projected anteriorly;5 upper premaxillary teeth,upper and lower canines absent,diastema between the last premaxillary upper incisor and first maxillary tooth present,no diastema separating anterior from posterior dentition in the mandible,10 maxillary teeth and 12 dentary teeth,posterior postcanine expands mesiodistally,having a main large cusps and tiny anterior and posterior accessory cusps in line;neural arches of the atlas fused by the neural spine,neural spine of the axis projected posteriorly,procoracoid foramen lies between procoracoid and scapula.Features of the dentition resembles those of the small baurioid Ericiolacerta parva from South Africa and Silphedosuchus orenburgensis from Russia.The specimens provide the rare opportunity to know in detail the postcranial skeleton of baurioids.
文摘The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.
基金Projects(41506080,41702162)supported by the National Natural Science Foundation of ChinaProjects(DD20160152,DD20160147,GZH200800503)supported by China Geological Survey+1 种基金Projects(XQ-2005-01,2009GYXQ10)supported by China Ministry of Land and ResourcesProject(201602004)supported by the Postdoctoral Innovation Foundation of Shandong Province,China
文摘In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is believed that the Upper Permian–Lower Triassic can be regarded as a long-term base-level cycle.Based on drilling data,characteristics of the lithology–electric property combination cyclicity,and the special lithology,the long-term base-level cycle was divided into five medium-term base-level cycles(MC1–MC5).On this basis,the Permian–Triassic sedimentary systems and their filling model were analyzed in accordance with the change of base-level cycle and transition of sedimentary environment,as well as characteristics of the drilling sedimentary facies and seismic facies.The results show that there were six sedimentary systems(fluvial,delta,tidal flat,open platform,restricted platform,and continental shelf)developed in the Upper Permian–Lower Triassic,the sedimentary systems were distributed such that the water was deep in the northwest and shallow in the southeast,and there were two base-level cycle filling models(a relatively stable tidal flat facies and a rapidly transgressive continental shelf facies to stable platform facies)developed in the Upper Permian–Lower Triassic.These models can provide a basis for evaluation of the Mesozoic–Paleozoic hydrocarbon geology in the South Yellow Sea Basin.
基金support from the China Geological Survey(Grant No.DD20190018)。
文摘The thrust nappe played an important role in the Mesozoic tectonic evolution of the middle part of the Central Asian Orogenic Belt(CAOB).However,the timing,structural style and kinematic processes of the thrust nappe remain controversial,particularly the detail of the thrust nappe in the Guaizihu region(110 km east of Ejinaq).In this study,we investigate new field mapping,seismic sections,geochronology and low-temperature thermochronometric dating to provide constraints on the history of this thrust nappe in the Chaheilingashun area(northwestern Guaizihu region).The field mapping,seismic sections and structural analysis reveal that the autochthonous system had developed a series of strong fold structures in the upper Permian strata.The allochthonous system mainly contains Devonian monzogranite(U-Pb age,ranges from 386.7 to 389.0 Ma)and Meso–Neoproterozoic schists(the maximum depositional age,~880 Ma),which were thrust upon the upper Permian strata during Middle to Late Triassic.Based on similar rocks,geochronological dating and the Yagan thrust,we suggest that the postulated root zone of this allochthon might have originated from the Huhetaoergai area(40–60 km northwest of the study area).The geochronological results reveal that the lower age limit of this thrust nappe is constrained by the Lower–Middle Triassic syntectonic sediments(tuffaceous sandstone,~247 Ma),which is the sedimentary response of the fold structure.,The timing of the termination of this thrust nappe is defined by the cooling age(^(40)Ar/^(39)Ar data,217–211 Ma)of the Devonian monzogranite and Meso–Neoproterozoic schists.Thus,we consider this thrust event in the study area to potentially have occurred in the period from 247 Ma to 211 Ma,which may represent the tectonic response to the closure of the Paleo-Asian Ocean.
基金Supported by the PetroChina Scientific Research and Technological Development Project(2021DJ0402).
文摘Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs.
基金Supported by the PetroChina Science and Technology Major Project(2021DJ08)National Natural Science Foundation of China(42241203).
文摘Mesozoic marine shale oil was found in the Qiangtang Basin by a large number of hydrocarbon geological surveys and shallow drilling sampling.Based on systematic observation and experimental analysis of outcrop and core samples,the deposition and development conditions and characteristics of marine shale are revealed,the geochemical and reservoir characteristics of marine shale are evaluated,and the layers of marine shale oil in the Mesozoic are determined.The following geological understandings are obtained.First,there are two sets of marine organic-rich shales,the Lower Jurassic Quse Formation and the Upper Triassic Bagong Formation,in the Qiangtang Basin.They are mainly composed of laminated shale with massive mudstone.The laminated organic-rich shale of the Quse Formation is located in the lower part of the stratum,with a thickness of 50–75 m,and mainly distributed in southern Qiangtang Basin and the central-west of northern Qiangtang Basin.The laminated organic-rich shale of the Bagong Formation is located in the middle of the stratum,with a thickness of 250–350 m,and distributed in both northern and southern Qiangtang Basin.Second,the two sets of laminated organic-rich shales develop foliation,and various types of micropores and microfractures.The average content of brittle minerals is 70%,implying a high fracturability.The average porosity is 5.89%,indicating good reservoir physical properties to the level of moderate–good shale oil reservoirs.Third,the organic-rich shale of the Quse Formation contains organic matters of types II1 and II2,with the average TOC of 8.34%,the average content of chloroform bitumen'A'of 0.66%,the average residual hydrocarbon generation potential(S1+S2)of 29.93 mg/g,and the Ro value of 0.9%–1.3%,meeting the standard of high-quality source rock.The organic-rich shale of the Bagong Formation contains mixed organic matters,with the TOC of 0.65%–3.10%and the Ro value of 1.17%–1.59%,meeting the standard of moderate source rock.Fourth,four shallow wells(depth of 50–250 m)with oil shows have been found in the organic shales at 50–90 m in the lower part of the Bagong Formation and 30–75 m in the middle part of the Quse Formation.The crude oil contains a high content of saturated hydrocarbon.Analysis and testing of outcrop and shallow well samples confirm the presence of marine shale oil in the Bagong Formation and the Quse Formation.Good shale oil intervals in the Bagong Formation are observed in layers 18–20 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 206.7 m thick,with the maximum and average(S0+S1)of 1.92 mg/g and 1.81 mg/g,respectively.Good shale oil intervals in the Quse Formation are found in layers 4–8 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 58.8 m thick,with the maximum and average(S0+S1)of 6.46 mg/g and 2.23 mg/g,respectively.
基金Supported by the PetroChina Science and Technology Project(2021DJ0501,2018A-0105).
文摘In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of Middle Triassic,recording a significant discovery.However,the hydrocarbon accumulation in marl remains unclear,which restricts the selection and deployment of exploration area.Focusing on Well CT1,the hydrocarbon accumulation characteristics of Lei-32 marl are analyzed to clarify the potential zones for exploration.The following findings are obtained.First,according to the geochemical analysis of petroleum and source rocks,oil and gas in the Lei-32 marl of Well CT1 are originated from the same marl.The marl acts as both source rock and reservoir rock.Second,the Lei-32 marl in central Sichuan Basin is of lagoonal facies,with a thickness of 40–130 m,an area of about 40000 km^(2),a hydrocarbon generation intensity of(4–12)×10^(8) m^(3)/km^(2),and an estimated quantity of generated hydrocarbons of 25×10^(12) m^(3).Third,the lagoonal marl reservoirs are widely distributed in central Sichuan Basin.Typically,in Xichong–Yilong,Ziyang–Jianyang and Moxi South,the reservoirs are 20–60 m thick and cover an area of 7500 km^(2).Fourth,hydrocarbons in the lagoonal marl are generated and stored in the Lei-32 marl,which means that marl serves as both source rock and reservoir rock.They represent a new type of unconventional resource,which is worthy of exploring.Fifth,based on the interpretation of 2D and 3D seismic data from central Sichuan Basin,Xichong and Suining are defined as favorable prospects with estimated resources of(2000–3000)×10^(8) m^(3).
基金Supported by the CNPC Science and Technology Project (2021DJ1806)the National Key Basic Research and Development Program (973 Program),China (2014CB239003)。
文摘The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
基金Supported by the National Natural Science Foundation of China(U22B6004).
文摘The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.
文摘Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.
基金jointly supported by Department of Natural Resources of Shanxi Provincethe Strategic Priority Research Program of Chinese Academy of Sciences (XDB26000000)。
文摘Kannemeyeriiformes were dominated tetrapods in the Middle Triassic terrestrial faunae of China.Although abundant materials of Sinokannemeyeria have been collected, their postcranial morphology information is not well studied, especially the juveniles. This paper presents a description of an articulated Sinokannemeyeria skeleton from the Middle Triassic Ermaying Formation and reports the histological microstructure of its femur. This specimen represents a late-stage juvenile based on the histological information. For the first time, this specimen offers insights into the postcrania information of juvenile Sinokannemeyeria.