期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis of the mechanic characteristics of the damage propagation of rock under triaxial stress condition
1
作者 杨更社 《Journal of Coal Science & Engineering(China)》 2001年第1期35-38,共4页
The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagati... The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last. 展开更多
关键词 ROCK damage propagation triaxial stress condition
下载PDF
Effect of CO_(2)on coal P-wave velocity under triaxial stress 被引量:3
2
作者 Shuangjiang Zhu Jianhong Kang +1 位作者 Youpai Wang Fubao Zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期17-26,共10页
As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on th... As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO_(2)through P-wave velocity during CO_(2)sequestration in coal.However,the effects of CO_(2)on the coal P-wave velocity under triaxial stress are not clearly discerned.In the present study,different boundary conditions and gases were utilised to investigate the factors affecting the P-wave velocity after the interaction of coal with CO_(2).Experiments with helium indicated that the pore pressure primarily affected the P-wave velocity by altering the effective stress.Experiments with CH4 and CO_(2)indicated that matrix swelling induced-cleats porosity decline significantly promoted P-wave velocity.Moreover,CO_(2)caused a wider scale and severe weakening of coal matrix than CH4,thereby significantly decreasing the P-wave velocity,and the decline in P-wave velocity increases with vitrinite content.Furthermore,experiments under different boundary conditions showed that with the boundary condition having more constraints,the decrement of pore pressure on P-wave velocity is more weaken,whereas the improvement of matrix swelling on P-wave velocity is more evident.This study contributes to understanding the mechanism of effect of CO_(2)on P-wave velocity under triaxial stress condition and provides guidance for monitoring CO_(2)sequestration in coal. 展开更多
关键词 CO_(2)sequestration monitoring P-wave velocity COAL triaxial stress condition
下载PDF
Experimental investigation on hard rock fragmentation of inserted tooth cutter using a newly designed indentation testing apparatus 被引量:3
3
作者 Jiuqun Zou Weihao Yang +2 位作者 Tao Zhang Xiaofei Wang Min Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期459-470,共12页
This investigation aims to explore the effects of stress conditions and rock cutting rates on hard rock fragmentation through indentation tests on a newly designed triaxial testing apparatus.This apparatus was designe... This investigation aims to explore the effects of stress conditions and rock cutting rates on hard rock fragmentation through indentation tests on a newly designed triaxial testing apparatus.This apparatus was designed to realize a triaxial loading and indentation test of cylindrical specimens using inserted tooth cutter.The boreability and crushing efficiency of granite rock was investigated by analyzing the change rules of the thrusting force,penetration depth,characteristics of chippings and failure patterns.Several quantitative indexes were used to evaluate rock boreability in this investigation.The granite rock samples all had a chiselled pit and a crushed rock core.Under initial stress conditions,only flat-shape chippings were stripped from the rock surface when the thrusting force reached 20 kN.The rock cutting special energy had a close correlation with the initial stress conditions and inserted tooth shape.Moreover,a thrusting force prediction model was proposed in this paper.The contribution of this study is that for the first time the influence mechanism of the initial triaxial stress conditions on rock fragmentation is investigated using an inserted tooth and the newly designed testing apparatus.This study has a crucial importance for practical underground hard rock crushing in geoengineering. 展开更多
关键词 Hard rock indentation test Hard rock fragmentation triaxial confined conditions New triaxial testing apparatus Inserted tooth cutter Cylindrical rock specimens
下载PDF
Describing failure in geomaterials using second-order work approach
4
作者 Franois Nicot Félix Darve 《Water Science and Engineering》 EI CAS CSCD 2015年第2期89-95,共7页
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin... Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory. 展开更多
关键词 Failure in geomaterials Undrained triaxial loading path Second-order work Kinetic energy Plastic limit condition Control parameter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部