Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t...Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.展开更多
Abstract Nanostructured and conventional AlzO3- 13 wt%TiO2 coatings were manufactured by air plasma spray. Friction and wear behaviors of coatings were investigated at room and elevated temperatures using an SRV wear ...Abstract Nanostructured and conventional AlzO3- 13 wt%TiO2 coatings were manufactured by air plasma spray. Friction and wear behaviors of coatings were investigated at room and elevated temperatures using an SRV wear test machine. The nanostructured coating has "two regions" microstructure, while the conventional coating has typical layered microstructure with obvious interfaces among splats. The coefficient of friction decreases with rising of temperature because of the for- mation of tribo-layer at elevated temperatures. The wear resistance of the nanostructured coatings is higher than that of the conventional coating, and the wear threshold of applied load is 30 N for conventional coating and 40 N for nanostructure coating. The wear resistance difference is related to the "two regions" microstructure of nanostruc- ture coating, which could blunt or branch the cracks propagation. In our test ranges, the wear rates rising are more sensitive with the applied wear load rising than with the temperature rising.展开更多
To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between ...To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.展开更多
基金Project (51071078) supported by the National Natural Science Foundation of ChinaProject (AE201035) supported by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, China
文摘Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.
基金financially supported by Chinese Ministries and Commissions project(No.503812)
文摘Abstract Nanostructured and conventional AlzO3- 13 wt%TiO2 coatings were manufactured by air plasma spray. Friction and wear behaviors of coatings were investigated at room and elevated temperatures using an SRV wear test machine. The nanostructured coating has "two regions" microstructure, while the conventional coating has typical layered microstructure with obvious interfaces among splats. The coefficient of friction decreases with rising of temperature because of the for- mation of tribo-layer at elevated temperatures. The wear resistance of the nanostructured coatings is higher than that of the conventional coating, and the wear threshold of applied load is 30 N for conventional coating and 40 N for nanostructure coating. The wear resistance difference is related to the "two regions" microstructure of nanostruc- ture coating, which could blunt or branch the cracks propagation. In our test ranges, the wear rates rising are more sensitive with the applied wear load rising than with the temperature rising.
文摘To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.